任务描述
本关任务:根据本关所学有关词性标注的知识,完成基于 jieba 模块进行词性标注的程序编写并通过所有测试用例。
相关知识
为了完成本关任务,你需要掌握:
-
词性标注的含义;
-
使用 Jieba 进行词性标注的方法。
词性标注简介
在自然语言分析中,机器需要模拟理解语言。为了实现这一点,自然语言处理过程中必须在一定程度上能够了解自然语言的规则。首先需要理解的是词,特别是每一个词的性质,判断它是一个名词还是一个形容词?如果它是一个动词的屈折形式,那么它的不定形式是什么,以及该屈折形式使用了什么对应的时态、人称和数?这个任务被称为词性标注。
词性标注的目标是用一个单独的标签标记每一个词,该标签表示了用法和其句法作用,比如名词、动词、形容词等。词性标注的正确与否将会直接影响到后续的句法分析、语义分析,它是中文信息处理的基础性课题之一。
常用的词性标注模型有 N 元模型、隐马尔可夫模型、最大熵模型、基于决策树的模型等。其中,隐马尔可夫模型是应用较广泛且效果较好的模型之一。
词性标注规范
词性标注需要有一定的标注规范,如将词分为名词、形容词、动词,然后用 n 、 adj 、 v 等来进行表示。中文领域中尚无统一的标注标准,较为主流的主要为北大的词性标注集和宾州词性标注集两大类。两类标注方式各有千秋,一般我们任选一种。如图下表所示,即为目前常用的词性标注规范表。
标记 | 词性 | 说明 |
---|