题目:
“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。
得到“答案正确”的条件是:
- 字符串中必须仅有
P
、A
、T
这三种字符,不可以包含其它字符; - 任意形如
xPATx
的字符串都可以获得“答案正确”,其中x
或者是空字符串,或者是仅由字母A
组成的字符串; - 如果
aPbTc
是正确的,那么aPbATca
也是正确的,其中a
、b
、c
均或者是空字符串,或者是仅由字母A
组成的字符串。
现在就请你为 PAT 写一个自动裁判程序,判定哪些字符串是可以获得“答案正确”的。
输入格式:
每个测试输入包含 1 个测试用例。第 1 行给出一个正整数 n (≤10),是需要检测的字符串个数。接下来每个字符串占一行,字符串长度不超过 100,且不包含空格。
输出格式:
每个字符串的检测结果占一行,如果该字符串可以获得“答案正确”,则输出 YES
,否则输出 NO
。
输入样例:
10
PAT
PAAT
AAPATAA
AAPAATAAAA
xPATx
PT
Whatever
APAAATAA
APT
APATTAA
输出样例:
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
解析:
输出YES需要满足以下条件:
1.有且只有一对PT,PT中间必须有若干个A(条件1)
2.PT之间如果只有一个A,则P之前和T之后的A数目相等,数目可以为0(条件2)
3.若PT之间的A大于1个,每多出一个A,就需要把P之前的A复制一份到T之后,又由于当PT之间只有一个A时,P之前和T之后A的数目相等,推测当PT之间:
有两个A时:T之后的A的数目是P之前的A的数目的两倍
有三个A时:T之后的A的数目是P之前的A的数目的三倍
......
由此推知,条件3最终想告诉我们的是,T之后A的数目 = P之前A的数目 * PT之间A的数目
代码:
#include<iostream>
using namespace std;
void solve()
{
string a;
cin>>a;
int i=-1,j=-1,k=0;//分别记录字符串中P和T的位置
while(a[k]!='\0')
{
if(a[k]=='P'||a[k]=='A'||a[k]=='T')//如果不是只有PAT,直接不通过
{
if(a[k]=='P')
{
if(i!=-1)//之前已经出现过P了
{
cout<<"NO"<<'\n';
return;
}
else
i = k;
}
if(a[k]=='T')
{
if(i==-1||j!=-1)//P还没出现或者已经出现过T了
{
cout<<"NO"<<'\n';
return;
}
else
j = k;
}
}
else
{
cout<<"NO"<<'\n';
return;
}
k++;
}
int x = i,y = j-i-1,z = k-j-1;//分别代表P之前A的个数,PT之间A的个数,T之后A的个数
if(y>0&&x*y==z)
cout<<"YES"<<'\n';
else
cout<<"NO"<<'\n';
}
int main()
{
int n;
cin>>n;
while(n--)
solve();
}