【c++算法篇】--图论之克鲁斯卡尔

c++克鲁斯卡尔算法-详解


在这里插入图片描述

下面让我们来具体介绍一下

概念

克鲁斯卡尔是一种求连通图的最小生成树的算法(用最少的路线连接所有点),它的时间复杂度为O(nloge)n为边数

原理

通过以结构体中的权值为排序对象来排序结构体,通过getf()函数来寻找有没有共同联通点,有的话就跳过,没有的话就进行加边操作并且记录答案,详细内容在下文实现方式中会讲到。
下面让我们用图的形式感受一下:
在这里插入图片描述
这里可以发现,1-2最小值为1,所以连接这条线,并且2的“爹”=1;
在这里插入图片描述
找完最小的边找第二条边,这时候1和4也就连通了
在这里插入图片描述
连接这条边后,他们的爹都统一了,所以就全部连通了
在这里插入图片描述

所以现在所有点的爹都有同一个值,那么他们就联通了
在算法中会通过寻找每一个值的爹来判断他们是否连通,如果连通那么就不管,如果没连通,就要进行加边操作,并且记录答案。

作用

通俗易懂的来说,就是用最小的权值连通图中所有点

实现方式

下面来看一道题
P3366 【模板】最小生成树
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz。

输入格式
第一行包含两个整数 N,M表示该图共有 N 个结点和 M 条无向边。

接下来 M 行每行包含三个整数 X_i,Y_i,Z_i
,表示有一条长度为 Z_i​
的无向边连接结点 X_i,Y_i
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz。

输入输出样例
输入 #1复制
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出 #1复制
7
说明/提示
数据规模:

对于 20%20% 的数据,N≤5,M≤20。

对于 40%40% 的数据,N≤50,M≤2500。

对于 70%70% 的数据N≤500,M≤10^4
对于 100%100% 的数据:1≤N≤5000,1≤M≤2×10^5,1≤Z ​≤10 ^4 请添加图片描述

样例解释:
所以最小生成树的总边权为 2+2+3=72+2+3=7。
这是一道经典的最小生成树模板题,具体细节让我们在代码中体现

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
   
	int u,v,w,next;

	bool operator < (const node &a)const{
   
		return w<a.w;//这里时以w为比较对象进行排序的意思,和下文sort一起用
	}

}e[1010101];
int m,n;
int f[1010101];
int getf(int x){
   
	return f[x]==x?x:f[x]=getf(f[x]);//这里就是上文所说,可以理解为“找爹”,具体解释在此题代码下方
}
inline int kruskal(){
   
	int val=0,cnt=0;
	sort(e+1,e+1+m);//无论如何记得排序
	for(int i=1;i<=m;i++){
   
		int u=e[i].u,v=e[i].v;//如果两个点没有连通那么就记录数据
		int xx=getf(u);
		int yy=getf(v);
		if(xx!=yy){
   
			cnt++,val+=e[i].w,f[xx]=yy;//边数加以,记录w,同步两点的“爹”
		}
		if(cnt==n-1) return val;
	}
	return 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贤鱼不闲

一分钱也是爱!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值