如何在云平台上调用Claude 3.7 Sonnet API进行推理

欢迎大家再次来到小李哥的AI学习系列,本篇文章中我们将介绍和学习如何使用亚马逊云科技云端的Python SDK调用Claude 3.7 Sonnet的混合推理功能。本教程将带大家完成一个真实的案例场景,让大家能够在自己的应用程序中集成Claude的超能力,并且理解该模型的内部思考过程。

Anthropic最近推出的首个混合推理模型登上了AI行业的头条,大家是不是也很关心Claude在回答复杂问题时的内部运作方式?现在Claude 3.7 Sonnet的新推理功能让大家可以一窥其背后的思维过程。这一能力提升了Claude如何分析问题、拆解复杂问题并得出结论的AI透明度。

在本文章中,我们将构建一个Python语言的应用程序,并且调用Amazon Bedrock上这一强大的AI模型。大家将学习如何在API调用时启用推理功能、为应用分配合适的计算资源,并处理包含Claude内部推理过程的结构化响应。无论是调试提示词、验证计算结果,还是将Claude作为教育工具,理解其推理过程都能显著提升大家的AI交互体验。

如果大家已经熟悉Claude和Amazon Bedrock,只需要获取代码部分,大家可以直接跳转到第二章的项目实现操作细节。

什么是推理功能?

推理是Claude能够在回答问题之前,明确地逐步思考复杂问题的过程。启用该功能后,Claude不会直接给出最终答案,而是像人类解决问题时“自言自语”一样,完整展现其思考过程。

此功能使Claude能够:

  • 将复杂问题拆解为可管理的组件
  • 探索多种解决问题的方法
  • 系统性分析信息并得出逻辑结论
  • 展示其推理过程,尤其适用于数学或逻辑问题
  • 识别自身思维中的潜在漏洞

推理功能对于需要多步骤思考去解决的问题尤为有用,例如复杂的数学计算、逻辑难题或需要细致分析的问答。通过揭示Claude的内部思维过程,大家可以更透明地理解其如何得出结论,从而增强信任并提供教育价值。

启用推理功能后,Claude会将部分计算资源(由大家的token预算决定)分配给这一明确的思考过程,并将其结果与最终答案一起返回给大家。这使大家能够前所未有地了解AI的思维链CoT,提升了传统AI模型遇到的低透明度问题。

实验前提条件

在开始本实验之前,请确保大家已具备以下条件:

  • 拥有一个亚马逊云科技账户,并获得Amazon Bedrock的访问权限
  • 安装了Python 3.x
  • 已安装并配置亚马逊云科技命令行终端工具CLI
  • 账户中已启用Claude 3.7 Sonnet访问权限

在撰写本文时,Claude 3.7可在亚马逊云科技平台上us-east-1、us-east-2和us-west-2区域使用。

设置依赖项

大家需要安装亚马逊云科技Python SDK(boto3)。以下是如何包含所需依赖项的方法:

pip install boto3>=1.37.0

或者在requirements.txt文件中添加以下内容:

boto3>=1.37.0

第1步:创建基础文件结构

创建一个新的Python文件(例如 claude_reasoning.py),我们将在其中编写Claude的推理功能交互代码。

import boto3
from botocore.exceptions import ClientError

def reasoning_example():
    # We'll implement this function in the next steps
    pass

if __name__ == "__main__":
    # We'll call our reasoning function here
    pass

第2步:设置Amazon Bedrock客户端

首先,我们需要创建一个Bedrock运行时客户端,以处理API请求。在 reasoning_example() 函数中添加以下代码:

# Create the Amazon Bedrock runtime client
client = boto3.client("bedrock-runtime", region_name="us-east-1")

# Specify the model ID for Claude 3.7 Sonnet
model_id = "us.anthropic.claude-3-7-sonnet-20250219-v1:0"

第3步:为Claude创建消息

接下来,我们将创建一个简单的消息并发送给Claude:

# Create the message with the user's prompt
user_message = "Describe the purpose of a 'hello world' program in one line."
conversation = [
    {
        "role": "user",
        "content": [{"text": user_message}],
    }
]

第4步:配置推理参数

这里是关键步骤——我们需要启用推理功能并设置token预算:

budget_tokens参数定义了Claude可以用于推理过程的最大token数量。大家可以根据提示词的复杂性调整此值。

# Configure reasoning parameters with a 2000 token budget
reasoning_config = {
    "thinking": {
        "type": "enabled",
        "budget_tokens": 2000
    }
}

第5步:发送请求至Claude

现在,我们将把提示词及推理配置发给Bedrock平台:

additionalModelRequestFields参数允许我们传递推理配置。

# Send message and reasoning configuration to the model
response = client.converse(
    modelId=model_id,
    messages=conversation,
    additionalModelRequestFields=reasoning_config
)

第6步:处理响应

Claude将返回其推理过程和最终答案,我们需要解析响应,并提取这些内容:

# Extract the list of content blocks from the model's response
content_blocks = response["output"]["message"]["content"]

reasoning = None
text = None

# Process each content block to find reasoning and response text
for block in content_blocks:
    if "reasoningContent" in block:
        reasoning = block["reasoningContent"]["reasoningText"]["text"]
    if "text" in block:
        text = block["text"]

return reasoning, text

第7步:展示结果

最后,我们将显示推理过程和最终答案。按照如下示例更新主函数:

if __name__ == "__main__":
    # Execute the example and display reasoning and final response
    reasoning, text = reasoning_example()
    print("\n<thinking>")
    print(reasoning)
    print("</thinking>\n")
    print(text)

完整代码

以下是完整的代码段:

import boto3
from botocore.exceptions import ClientError

"""
This example demonstrates how to use Anthropic Claude 3.7 Sonnet's reasoning capability
with Amazon Bedrock. It shows how to:
- Set up the Amazon Bedrock runtime client
- Create a message
- Configure reasoning parameters
- Send a request with reasoning enabled
- Process both the reasoning output and final response
"""

def reasoning_example():
    # Create the Amazon Bedrock runtime client
    client = boto3.client("bedrock-runtime", region_name="us-east-1")

    # Specify the model ID. For the latest available models, see:
    # https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html
    model_id = "us.anthropic.claude-3-7-sonnet-20250219-v1:0"

    # Create the message with the user's prompt
    user_message = "Describe the purpose of a 'hello world' program in one line."
    conversation = [
        {
            "role": "user",
            "content": [{"text": user_message}],
        }
    ]

    # Configure reasoning parameters with a 2000 token budget
    reasoning_config = {
        "thinking": {
            "type": "enabled",
            "budget_tokens": 2000
        }
    }

    try:
        # Send message and reasoning configuration to the model
        response = client.converse(
            modelId=model_id,
            messages=conversation,
            additionalModelRequestFields=reasoning_config
        )

        # Extract the list of content blocks from the model's response
        content_blocks = response["output"]["message"]["content"]

        reasoning = None
        text = None

        # Process each content block to find reasoning and response text
        for block in content_blocks:
            if "reasoningContent" in block:
                reasoning = block["reasoningContent"]["reasoningText"]["text"]
            if "text" in block:
                text = block["text"]

        return reasoning, text

    except (ClientError, Exception) as e:
        print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}")
        exit(1)

if __name__ == "__main__":
    # Execute the example and display reasoning and final response
    reasoning, text = reasoning_example()
    print("\n<thinking>")
    print(reasoning)
    print("</thinking>\n")
    print(text)

示例输出

运行此代码后,大家将会看到类似于以下的输出:

<thinking>
I need to explain the purpose of a "Hello World" program in a single line.

A "Hello World" program is typically the simplest program that can be written in
a programming language. Its purpose is to:
1. Verify that the programming environment is set up correctly
2. Demonstrate the minimal syntax needed to create a functioning program
3. Provide a simple introduction to the language
4. Output the text "Hello, World!" or a similar message

I need to condense this information into a concise, one-line description that
captures the essence of what a "Hello World" program is for.
</thinking>

A "Hello World" program serves as the simplest introduction to a programming
language by demonstrating basic syntax while verifying the environment works correctly.

总结

Claude最新推出的推理功能彻底改变了我们与AI的交互方式,使我们能够深入了解模型的思维过程。通过本文章中介绍的步骤和详细代码,大家现在可以在Amazon Bedrock上使用Python访问并利用这一强大功能。

该推理功能为提升AI透明度和信任性、优化AI输出的结果、深入理解AI交互的过程开辟了新的一种方式。对于要求更高的AI应用使用场景,大家可以考虑:

  • 根据问题的复杂性调整token预算——更复杂的问题可能需要更大的推理预算,节约成本
  • 使用推理输出验证多步计算任务或复杂分析流程
  • 通过调整提示词对比不同的推理方法
  • 将推理与Claude的其他能力(如函数调用、知识库等)结合,实现强大且更透明的AI解决方案
  • 作为教育工具使用该推理功能,解决学术级、专业级别的问题

通过将推理功能集成到日常开发的AI应用中或者教育学习中,大家不仅可以获得答案,还能深入了解完整的解题过程。这种透明度有助于建立用户对AI的信任,并提供更加丰富和有价值的AI交互体验。

### Claude 3.7 Sonnet Max 中 Cursor 的引入及其作用 #### Cursor 的定义与功能扩展 Cursor 是一款由 Anthropic 开发的强大工具,旨在增强开发者的生产力。随着 Claude 3.7 Sonnet Max 的发布,Cursor 得到了进一步的功能升级和支持[^3]。这一集成使得开发者能够更好地利用 Claude 3.7 Sonnet Max 的核心优势,包括混合推理能力和高效的代码生成。 #### 混合推理能力的支持 Claude 3.7 Sonnet Max 的混合推理能力允许它在处理复杂任务时提供即时和逐步的响应。这种特性对于需要多步逻辑推导的任务尤为重要。通过 Cursor 的引入,开发者可以在实际应用场景中更灵活地调用这些能力,从而提高工作效率并减少手动干预的需求[^2]。 #### 长输出支持与编码表现优化 除了混合推理外,Claude 3.7 Sonnet Max 还以其出色的长输出支持和编码性能著称。Cursor 的加入进一步增强了这一点,使用户能够在不牺牲精度的情况下生成更复杂的代码片段或文档。即使面对一些无法直接调整的参数设置,也可以借助提示工程(Prompt Engineering)来最大化模型的表现力。 #### 实际应用案例分析 例如,在软件开发过程中,当遇到需要快速原型设计或者自动化测试脚本编写的情况时,可以通过 Cursor 调用 Claude 3.7 Sonnet Max 来完成相关工作。这不仅加快了项目进度,还降低了人为错误的可能性[^4]。 ```python # 使用 Cursor API 调用 Claude 3.7 Sonnet Max 示例 import cursor_api def generate_code(prompt): response = cursor_api.call_model( model="claude-3.7-sonnet-max", prompt=prompt, max_tokens=500 ) return response[&#39;completion&#39;] prompt = "Write a Python function that calculates the factorial of an integer." code_snippet = generate_code(prompt) print(code_snippet) ``` 上述代码展示了如何通过 Cursor API 调用 Claude 3.7 Sonnet Max 来生成一段计算阶乘函数的 Python 代码。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值