[](()1. 边缘计算顶层架构
业界定义的边缘计算的分层结构,主要引用 Gartner、IDC。
Gartner 定义的分层结构如下图所示:Endpoint > Near edge > Far edge > Cloud > Enterprise。
![2.jpg](https://img-blog.csdnimg.cn/img_convert/d120a 《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》无偿开源 威信搜索公众号【编程进阶路】 659186a766ed6e9fbc86649dccd.jpg)
-
Near Edge :非标准服务器或设备,在距离端侧最近的地方。
-
Far Edge :标准的 IDC,可以分三种类型:IDC(为主)、MEC、CDN 等;相对来说,计算能力比较强,比如运营商的机房、云服务提供商的级联机房等等。
-
Cloud :公共云或专有元服务,特征为资源集中、中心化管理。
IDC 定义的分层结构如下图所示:
-
Heavy Edge:数据中心维度;集中式计算平台;CDN,自建 IDC。
-
Light Edge:低功耗计算平台,适用于工业控制,数据处理、传输等物联网场景。
由上图可以看出,Gartner 定义与 IDC 定义其实是相互依存,相互关联的。另外,边缘计算与云计算不是替代关系,而是相互补充、相互关联的关系。
[](()2. 边缘计算行业趋势
边缘计算行业趋势可以从以下三个方面(维度)来讲:第一是行业的业务,第二是行业的架构,第三是行业的规模与变化。
[](()趋势一:AI 、IoT 与边缘计算的融合
近几年来,边缘计算和 AI、IoT 的结合非常多,边缘智能设备的数量增加之后,包括所有的数据或视频全部回传到云端去处理,整个成本与效率都非常不合适,所以直接靠近设备这一侧进行 AI 处理或 IoT 处理的需求越来越多。比如 AI,会在云上或在中心云做训练,然后在边缘做推理,有非常多这种形式。调查显示:
-
到 2024 年,有 50% 的计算机视觉和语音识别模型将在边缘运行。
-
到 2023 年,近 20% 用于处理 AI 工作负载的服务器部署在边缘侧。
-
到 2023 年,中国 70 % 的物联网项目将包含 AI 功能,追求实时性、降低带宽、数据合规。
-
到 2023 年,中国 75 % 的企业将在网络边缘对物联网数据进行处理。
[](()趋势二:云延伸,IT 去中心化,设施自治,边缘托管
边缘计算跟云计算是相互补充、相互依赖的关系。再延伸一步说,边缘计算其实是云计算往边缘的一个延伸,把云上的一些能力往边缘上延伸。一是要求 IT业务在边缘这一侧去中心化,另外因为边缘业务或设施是自治的,云和边之间网络断开的情况下,有一定控制能力,再有边缘托管能力。未来架构趋势将向云延伸、IT 中心化、设施自治、边缘托管的发展路线演进:
-
混合云 - 到 2023 年, 10% 的企业负载将运行位于本地数据中心和边缘资源上。
-
去中心化 - 到 2023 年,超过 30% 新基础架构将部署在边缘位置。
-
设施自治 - 到 2024 年,50% 核心企业数据中心和 75% 主要边缘 IT 站点将改变运维方式。
-
边缘托管 - 到 2022 年,50% 的公司将依靠托管服务来提高基于边缘人工智能的性能和投资回报率。
[](()趋势三:5G 与边缘计算引爆新增长
最近几年,5G 的快速发展,对边缘计算是一个新的增长引爆点。预计到 2024 年,边缘应用程序的数量将增长 800% ,可以想象这个行业后面会是什么样的增长情况。典型应用场景将包括车联网(自动驾驶/车路协同)、智能电网(设备巡检/精准负荷控制)、工业生产控制、智慧医疗(远程B超/远程会诊)等。
[](()3. 边缘计算现状
[](()边缘云促使管理的复杂性迅速上升
随着边缘计算的形态、规模、复杂度的日益增长,边缘计算领域的运维手段、运维能力越来越难以满足边缘业务的创新速度;而“未来企业都在全力追求超规模、超高速、超连接”,又进一步加剧运维管理的复杂度。边缘云促使管理的复杂性迅速上升,主要来自以下四个方面:
-
第一,互联网智能终端设备数量的急剧增加;数据、业务下沉的诉求增多。
-
第二,边缘计算规模和业务复杂度提升,边缘智能、边缘实时计算、边缘分析等新型业务不断涌现。传统云计算中心集中存储、计算的模式已经无法满足边缘设备对于时效、容量、算力的需求。
-
第三,云边端协同难度大,缺少统一的交付、运维、管控标准,且边缘服务和边缘数据的安全风险控制难度较高。
-
第四,异构资源支持困难,对不同硬件架构、硬件规格、通信协议的支持,以及基于异构资源、网络、规模等差异化提供标准统一的服务能力的挑战。
[](()云边一体的边缘云原生
===============================================================================
[](()1. 什么是云原生?
云原生的定义:云原⽣是一套开放、标准的技术体系。基于云原生技术体系,可以为用户敏捷的构建和运行高弹性、容错性好、易于管理的一套业务系统。整个技术体系有很多热门技术,如 Cloud Native、Serverless、Kubernetes、Container、Docker 等等,业界广泛使用的这些技术。
现在各大云厂商、云服务提供商都在大力投入云原生,云原生也越来越成为广大用户使用云计算能力的入口。云原生技术体系能够帮助企业最大化利⽤云的能⼒,最大化发挥云的价值。
[](()2. 丰富的云原生产品家族
以阿里云为例,云原生产品家族主要分三块,如下图所示:
-
第一块是新的应用负载,包括:数据&智能、分布式应用、DevOps,现在都是通过云原生承载业务。
-
第二块包括:Serverless、容器编排,是一个新的业务系统。
-
第三块包括:公共云、专有云、边缘云是一个新的资源承载系统。
[](()3. 云边一体云原生基础设施
云边一体云原生基础设施,是在云端做管控、边缘自治的云原生系统。如下图所示:
在中心这一侧,可以提供原生的云中心的管控能力和产品化能力,例如利用 Kubernetes+存储/+AI/+大数据等能力可以在中心提供出来;中心的这些能力通过管控通道,下沉到边缘计算,比如标准化的 CDN、 Infrastructure 、Edge、ENS,或者是上图右边的智慧工厂、智慧园区、楼宇、机场等等的设备网关;在边缘,可以就近接入各种设备,比如传感器、视频、控制器等等,可以支持各种通讯设备接入。这样便形成了云边端一体化的云原生基础设施。
云计算擅长需要海量可扩展存储能力,非实时且周期相对较长的数据处理和分析,而边缘计算脱胎于云计算,它擅长的是局部短周期数据的实时处理和分析,云计算与边缘计算之间不是替代关系,而是互相协同的关系,二者之间紧密结合才能更好地满足各种需求场景的匹配。
[](()4. 云边一体价值
云原生的概念最早是在 2013 年被提出,经过这几年的发展,尤其是从 2015 年 Google 牵头成立 CNCF 以来,云原生技术开始进入公众的视线并逐渐演变成包括 DevOps、持续交付、微服务、容器、基础设施,Serverless,FaaS 等一系列的技术,实践和方法论集合。云原生加速了多云、云边融合,云边一体的价值是:
-
一是可以为用户在任何基础设施上提供和云上一致的功能和体验,实现云边端一体化的应用。
-
二是可以利用容器的隔离性,利用系统的流量控制、网络策略等能力,保证运行在边缘上业务的安全性。
-
三是通过容器化,通过容器和资源之间的解耦,对异构资源的支持上能够有很好的适配。
[](()5. 云原生与边缘计算融合难点
随着边缘计算的形态、规模、复杂度的日益增长,边缘计算领域的运维手段、运维能力越来越难以满足边缘业务的创新速度;而未来企业都在全力追求“超规模、超高速、超连接”,又进一步加剧运维管理的复杂度。
云原生与边缘计算融合要解决什么问题?在实际的解决问题的过程中,总结出以下 4 个关键点:
第一点:边缘计算规模和业务复杂,边缘资源的分散在不同地域,各个区域内部的边缘应用的生命周期管理,升级,扩缩容,区域内部流量闭环都面临挑战。
举个例子,比如 CDN 场景,全国各地可能有成百上千个机房,每个机房的资源或者机器可能都不一样,机器上面运行的业务承载的流量可能也不太一样。这时如果是用原生 Kubernetes 的 workload 来管理是非常不足的,会形成非常大的挑战,容易出错,整个运维效率非常低。
第二点:云边网络连接不可靠。通常情况下,云和边之间会通过公网连接,在一些客观因素的影响下,云边之间的网络可能出现断联,对边缘业务的持续运行形成很大挑战。因为网络断开的情况下,节点会脱离云端管控,在原生K8s下会对该Pod进行驱逐。但实际情况下无论是业务重启还是机器重启,都需要保证边缘业务可以持续运行。因此边缘需要一定的自治能力。
第三点:云边端运维协同难度大,由于边缘的机器是部署用户防火墙内部的,公网无法主动连接。因此,一些需要从中心拉取数据的K8s原生运维能力就无法使用,造少缺少统一的交付、运维、管控标准,且边缘服务和边缘数据的安全风险控制难度较高。
第四点:异构资源支持困难,对不同硬件架构、硬件规格、通信协议的支持,以及基于异构资源、网络、规模等差异化提供标准统一力的挑战。
[](()OpenYurt 边缘计算云原生平台
=======================================================================================
CNCF 边缘云项目 OpenYurt:延伸原生 Kubernetes 到边缘计算的智能开放平台。
[](()1. 边缘自治、中心(云)管控
OpenYurt 架构是非常简洁的云边的一体化的架构,如上图所示,云上有蓝色和橙色两部分,蓝色部分是原生 K8s 的一些组件,然后橙色部分是 OpenYurt 的组件;边缘的每个节点上,Edge Note 上每个节点上也有蓝色的部分和橙色的部分,蓝色部分也是原生的 K8s 的组件,或者设置的一些云原生的一些组件,橙色部分是 OpenYurt 的组件。
大家能看到 OpenYurt 对 K8s 或者对云原生的这种原生的架构是 0 修改、非侵入式的,OpenYurt 项目是业界首个非侵入式增强 K8s 的一个边缘计算云原生平台。其他的边缘计算云原生项目,或多或少可能都对 K8s 做了一定的修改或者裁剪,这也是 OpenYurt 最大的区别,因此也就保证了 OpenYurt 的标准化。
-
OpenYurt 可以紧跟 Kubernetes 版本升级节奏。
-
非侵入式的理念,OpenYurt 与云原生主流技术,如 ServeiceMesh、Serverless 等,可以同步衍进。
OpenYurt 在 2020 年 9 月份进入 CNCF sandbox,是一个非常中立的项目,一是技术、架构上的中立,二是这个项目运营上的中立。
OpenYurt 的品质和稳定性也是有保障的,在阿里集团内部,使用非常广泛,已经管理数百万核的规模。
[](()2. OpenYurt 如何解决原生与边缘计算融合难点
- 第一,边缘单元化。大规模业务下,因为边缘单元分比较分散,因此通过边缘单元化,对单元内业务进行一个单元化的管理以及流量闭环的管理。