完全图的生成树

完全图和生成树是图论中的两个重要概念,以下是它们的定义和区别:

1. 完全图(Complete Graph)

  • 定义
    完全图是一个简单图,其中任意两个不同的顶点之间都有一条边直接相连

    • 顶点数为 ( n ) 的完全图记作 ( K_n )。
    • 边数为 ( \frac{n(n-1)}{2} )。
  • 特点

    • 每个顶点的度数均为 ( n-1 )。
    • 是连通性最强的图(任意两点可达)。
    • 例如:
      • ( K_3 ) 是三角形,每个顶点连接另外两个顶点;
      • ( K_4 ) 是四面体形状的图。

2. 生成树(Spanning Tree)

  • 定义
    生成树是连通图 ( G ) 的一个子图,满足:

    • 包含 ( G ) 的所有顶点
    • 无环的连通图;
    • 边数为 ( n-1 )(( n ) 为顶点数)。
  • 特点

    • 生成树是 ( G ) 的最小连通子图(边数最少)。
    • 若原图不连通,则不存在生成树。
    • 例如:
    • 四边形(4个顶点)的生成树是3条边构成的树形结构(如链状)。

两者的关系

  1. 完全图的生成树
    完全图 ( K_n ) 的生成树数目为 ( n^{n-2} )(由凯莱公式得出)。
    例如,( K_3 ) 有 ( 3^{1}=3 ) 种生成树(每个顶点作为根的树)。

  2. 应用场景

    • 完全图常用于建模“全连接”网络(如社交网络中所有人互相认识)。
    • 生成树用于设计最小连通网络(如电力网、通信网的骨干结构),以节省资源。

总结

  • 完全图:所有顶点两两相连,边数最多;
  • 生成树:保留所有顶点但边数最少,且无环。
    两者分别代表图的“最大连通性”和“最小连通性”,在不同问题中各有应用。

例题

在这里插入图片描述
答案:C
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangyuxuan1029

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值