完全图和生成树是图论中的两个重要概念,以下是它们的定义和区别:
1. 完全图(Complete Graph)
-
定义:
完全图是一个简单图,其中任意两个不同的顶点之间都有一条边直接相连。- 顶点数为 ( n ) 的完全图记作 ( K_n )。
- 边数为 ( \frac{n(n-1)}{2} )。
-
特点:
- 每个顶点的度数均为 ( n-1 )。
- 是连通性最强的图(任意两点可达)。
- 例如:
- ( K_3 ) 是三角形,每个顶点连接另外两个顶点;
- ( K_4 ) 是四面体形状的图。
2. 生成树(Spanning Tree)
-
定义:
生成树是连通图 ( G ) 的一个子图,满足:- 包含 ( G ) 的所有顶点;
- 是无环的连通图;
- 边数为 ( n-1 )(( n ) 为顶点数)。
-
特点:
- 生成树是 ( G ) 的最小连通子图(边数最少)。
- 若原图不连通,则不存在生成树。
- 例如:
- 四边形(4个顶点)的生成树是3条边构成的树形结构(如链状)。
两者的关系
-
完全图的生成树:
完全图 ( K_n ) 的生成树数目为 ( n^{n-2} )(由凯莱公式得出)。
例如,( K_3 ) 有 ( 3^{1}=3 ) 种生成树(每个顶点作为根的树)。 -
应用场景:
- 完全图常用于建模“全连接”网络(如社交网络中所有人互相认识)。
- 生成树用于设计最小连通网络(如电力网、通信网的骨干结构),以节省资源。
总结
- 完全图:所有顶点两两相连,边数最多;
- 生成树:保留所有顶点但边数最少,且无环。
两者分别代表图的“最大连通性”和“最小连通性”,在不同问题中各有应用。
例题
答案:C