实验四 近邻分类器

实验四、近邻法分类器

实验目的

本实验旨在让同学理解近邻法的原理,通过软件编程分段线性分类器的极端情况,理解 k-近邻法和剪辑近邻的设计过程,掌握影响 k-近邻法错误率的估算因素等。

实验条件

MATLAB 软件、 PC 机器

实验原理

最近邻法可以扩展成找测试样本的 k 个最近样本作决策依据的方法。其基本规则是,在所有 N 个样本中找到与测试样本的 k 个最近邻者,其中各类别所占个数表示成 k i , i = 1 , . . . , c k_i,i=1,...,c ki,i=1,...,c,则决策规划是:
k j ( X ) = max ⁡ i k i ( X ) , i = 1 , . . . , c → X ∈ w j {k_j}(X) = \mathop {\max }\limits_i {k_i}(X),i = 1,...,c \to X \in {w_j} kj(X)=imaxki(X),i=1,...,cXwj
k 近邻一般采用 k 为奇数,跟投票表决一样,避免因两种票数相等而难以决策。

剪辑近邻法的基本思想是从这样一个现象出发的,即当不同类别的样本在分布上有交迭部分的,分类的错误率主要来自处于交迭区中的样本。当我们得到一个作为识别用的参考样本集时,由于不同类别交迭区域中不同类别的样本彼此穿插,导致用近邻法分类出错。因此如果能将不同类别交界处的样本以适当方式筛选,可以实现既减少样本数又提高正确识别率的双重目的。为此可以利用现有样本集对其自身进行剪辑。下面以两类别问题为例说明这种方法的原理。

假设现有一个样本集 N,样本数量为 N。我们将此样本集分成两个互相独立的样本子集。一个被当作考试集 a N T a^{NT} aNT ,另一个作为参考集 a N R a^{NR} aNR ,数量分别为 N T N_T NT N R N_R NR N T N_T NT + N R N_R NR =N。将 a N T a^{NT} aNT中的样本表示成 X i , i = 1 , . . . , N T X_i,i=1,...,N_T Xi,i=1,...,NT,而在 a N R a^{NR} aNR 中的样本表示为 Y i , j = 1 , . . . , N R Y_i,j=1,...,N_R Yi,j=1,...,NR

将一个样本集分成两个相互独立的样本子集是指,分完以后的两个子集具有相同的分布例如将一个样本集分成两个相互独立的对等子集,则在每个特征空间的子区域,两个子集都有相同的比例,或说各类数量近似相等。 要注意指出的是每个子区域(从大空间到小空间)实际做时要用从总的集合中随机抽取的方式进行。

剪辑的过程是: 首先对 a N T a^{NT} aNT中每一个 X i X_i Xi a N R a^{NR} aNR 中找到其最近邻的样本 Y i ( X i ) Y_i(X_i) Yi(Xi),用 Y i ( X i ) Y_i(X_i) Yi(Xi)表示 Y i Y_i Yi X i X_i Xi的最近邻参考样本。如果 Y i Y_i Yi X i X_i Xi不属于同一类别,则将 X i X_i Xi a N T a^{NT} aNT 中删除,最后从 a N T a^{NT} aNT中得到一个经过剪辑的样本集,称为剪辑样本集 a N T E a^{NTE} aNTE a N T E a^{NTE} aNTE可用来取代原样本集 a N a_N aN,作为参考样本集对待识别样本进行分类.

a 经过剪辑后,要作为新的训练样本集,则 a N R a_{NR} aNR是对其性能进行测试的样本,如发现 a N T a_{NT} aNT中的某个训练样本对分类不利,就要把它剪辑掉。

实际上剪辑样本的过程也可以用 k-近邻法进行,即对 a N T a_NT aNT 中的每个样本 X i X_i Xi,找到在 a N R a_{NR} aNR 中的 k 个近邻,用 k-近邻法判断 X i X_i Xi是否被错分类。从而决定其取舍,其它过程与前述方法完全一样。

剪辑近邻法也可用到多类别情况。剪辑过程也可不止一次。重复多次的称为重复剪辑近邻法。

示例代码

function [index_cluster,cluster] = kmeans_func(data,cluster_num)
%% 原理推导Kmeans聚类算法
[m,n]=size(data);
cluster=data(randperm(m,cluster_num),:);%从m个点中随机选择cluster_num个点作为初始聚类中心点
epoch_max=1000;%最大次数
therad_lim=0.001;%中心变化阈值
epoch_num=0;
while(epoch_num<epoch_max)
    epoch_num=epoch_num+1;
    % distance1存储每个点到各聚类中心的欧氏距离
    for i=1:cluster_num
        distance=(data-repmat(cluster(i,:),m,1)).^2;
        distance1(:,i)=sqrt(sum(distance'));
    end
    [~,index_cluster]=min(distance1');%index_cluster取值范围1~cluster_num
    % cluster_new存储新的聚类中心
    for j=1:cluster_num
        cluster_new(j,:)=mean(data(find(index_cluster==j),:));
    end
    %如果新的聚类中心和上一轮的聚类中心距离和大于therad_lim,更新聚类中心,否则算法结束
    if (sqrt(sum((cluster_new-cluster).^2))>therad_lim)
        cluster=cluster_new;
    else
        break;
    end
end
end

clc;clear;close all;
data(:,1)=[90,35,52,83,64,24,49,92,99,45,19,38,1,71,56,97,63,...
    32,3,34,33,55,75,84,53,15,88,66,41,51,39,78,67,65,25,40,77,...
    13,69,29,14,54,87,47,44,58,8,68,81,31];
data(:,2)=[33,71,62,34,49,48,46,69,56,59,28,14,55,41,39,...
    78,23,99,68,30,87,85,43,88,2,47,50,77,22,76,94,11,80,...
    51,6,7,72,36,90,96,44,61,70,60,75,74,63,40,81,4];
figure(1)
scatter(data(:,1),data(:,2),'LineWidth',2)
title("原始数据散点图")
cluster_num=3;
[index_cluster,cluster] = kmeans_func(data,cluster_num);
%% 画出聚类效果
figure(2)
% subplot(2,1,1)
a=unique(index_cluster); %找出分类出的个数
C=cell(1,length(a));
for i=1:length(a)
   C(1,i)={find(index_cluster==a(i))};
end
for j=1:cluster_num
    data_get=data(C{1,j},:);
    scatter(data_get(:,1),data_get(:,2),100,'filled','MarkerFaceAlpha',.6,'MarkerEdgeAlpha',.9);
    hold on
end
%绘制聚类中心
plot(cluster(:,1),cluster(:,2),'ks','LineWidth',2);
hold on
sc_t=mean(silhouette(data,index_cluster'));
title_str=['原理推导K均值聚类','  聚类数为:',num2str(cluster_num),'  SC轮廓系数:',num2str(sc_t)];
title(title_str)

在这里插入图片描述

图1 实验测试图
 
% data set;
Sigma = [1, 0; 0, 1];
mu1 = [1, -1];
x1 = mvnrnd(mu1, Sigma, 200);
mu2 = [5, -4];
x2 = mvnrnd(mu2, Sigma, 200);
mu3 = [1, 4];
x3 = mvnrnd(mu3, Sigma, 200);
mu4 = [6, 4];
x4 = mvnrnd(mu4, Sigma, 200);
mu5 = [7, 0.0];
x5 = mvnrnd(mu5, Sigma, 200);
X = [x1; x2; x3; x4; x5];
X_label = [ones(200, 1); 2 * ones(200, 1); 3 * ones(200,1); 4 * ones(200, 1);5 * ones(200, 1)];
% Show the data points 
plot(x1(:,1), x1(:,2), 'r.'); hold on;
plot(x2(:,1), x2(:,2), 'b.');
plot(x3(:,1), x3(:,2), 'k.');
plot(x4(:,1), x4(:,2), 'g.');
plot(x5(:,1), x5(:,2), 'm.');
% select initial clustering center
m = 30;
a = max(X);
b = min(X);
k=5;
mu = zeros(k,2*m);
r = zeros(m,1);
for t=1:m
    for i=1:k
        mu(i,2*t-1:2*t)=[a(1)+(b(1)-a(1))*rand,a(2)+(b(2)-a(2))*rand];
    end
    for j = 1 : 1000
        R = repmat(X(j, :), k, 1) - mu(:,2*t-1:2*t);
        r(t) = r(t) + sum(sum(R.*R));
    end
end
p = find(r==min(r));
mu = mu(:,2*p-1:2*p);
label = zeros(1000, 1);
mu_new = mu;
eps = 1e-6;
delta = 1;
while (delta > eps)
    mu = mu_new;
    for i =1:1000
        y = repmat (X(i, :), k, 1);
        dist = y - mu;
        d = sum(dist.*dist,2);
        j = find(d==min(d));
        label(i) = j;
    end
    for j = 1 : k
        order = find(label == j);
        mu_new(j, :) = mean(X(order, :), 1);
    end
    delta = sqrt(sum(sum((mu-mu_new).*(mu-mu_new))));
end
label = zeros(1000, 1);
for i = 1 : 1000
    R = repmat(X(i,:),k,1) - mu;
    Residual = sum(R.*R,2);
    j = find(Residual == min(Residual));
    label(i) = j;
end
% Construct map function
s = zeros(k, 1);
for j =1 : k
    order = find(label==j);
    Y = X_label(order);
    s(j) = mode(Y);
end
map_label =zeros(1000, 1);
for j = 1 : k
    map_label(label==j) = s(j);
end
figure;
hold on;
for i =1:1000
    if map_label(i)==1
        plot(X(i,1),X(i,2),'r.');
    elseif map_label(i)==2
        plot(X(i,1),X(i,2),'b.');
    elseif map_label(i)==3
        plot(X(i,1),X(i,2),'k.');
    elseif map_label(i)==4
        plot(X(i,1),X(i,2),'g.');
    else
        plot(X(i,1),X(i,2),'m.');
    end
end
% show the cluster center
for i = 1 : 5
    plot(mu(i,1),mu(i,2),'yo','LineWidth',3);
end
% Calculate NMI(Normalized Mutual Information)
d = zeros(5, 1);
g = d;
sigma = zeros(5,5);
numerator = 0;
denominator1 = 0;
denominator2 = 0;
for i = 1 : 5
    d(i) = length(find(map_label==i));
    g(i) = length(find(X_label==i));
end
for i = 1 : 5 
    for j = 1 : 5
        order = find(map_label==i);
        sigma(i,j) = length(find(X_label(order)==j));
        if sigma(i,j)~=0
            numerator = numerator + sigma(i,j).*log(1000.*sigma(i,j)./(d(i).*g(j)));
        end
    end
end
 
for i = 1 : 5
    if d(i)~=0
        denominator1 = denominator1 + d(i).*log(d(i)/1000);
    end
    if g(i)~=0
        denominator2 = denominator2 + g(i).*log(g(i)/1000);
    end
end
denominator = sqrt(denominator1 * denominator2);
NMI = numerator/denominator;
fprintf('NMI=%.3f\n',NMI);
accuracy = sum(map_label == X_label)/1000;
fprintf('accuracy=%.3f\n',accuracy);

在这里插入图片描述

图2 实验图2
  • 31
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: k近邻分类器的超参数包括k值的选择、距离度量方式的选择等。常用的调优方法有以下几种: 1. 网格搜索(Grid Search):对于每个超参数组合,通过交叉验证计算模型性能,最终选取最佳超参数组合。 2. 随机搜索(Random Search):随机选取超参数组合,并通过交叉验证计算模型性能,最终选取性能最好的超参数组合。 3. 贝叶斯优化(Bayesian Optimization):基于贝叶斯定理,通过已知的超参数组合和性能信息,计算后验概率分布,进一步选择更优的超参数组合。 4. 遗传算法(Genetic Algorithm):通过模拟生物进化过程,对超参数进行优化。 以上方法都有各自的优缺点,需要根据具体情况选择。 ### 回答2: k近邻(k-nearest neighbors,简称KNN)是一种常用的分类算法,其基本思想是通过计算未知样本与已知样本之间的距离,找出与其最近的k个邻居,根据这些邻居的标签确定未知样本的类别。 在使用KNN分类器时,超参数调优是非常重要的,它们可以影响模型的性能和效果。以下是一些常用的超参数和调优方法: 1. 选择合适的K值:K值是指在确定未知样本类别时所考虑的邻居数目。K值的选择可以通过交叉验证来确定,通过尝试不同的K值并评估模型的性能,选择使模型效果最好的K值。 2. 距离度量方式:KNN分类器中常用的距离度量方式有欧几里得距离、曼哈顿距离等。在实践中,可以尝试不同的距离度量方式来比较模型的性能,并选择最佳的度量方式。 3. 特征归一化:对于KNN算法来说,特征的尺度差异会对距离度量产生影响,因此需要对特征进行归一化处理。常用的特征归一化方法有Z-score归一化和Min-Max归一化等,在实验中可以分别应用这些方法,并比较它们对模型性能的影响。 4. 权重设置:在KNN中,可以为每个邻居样本设置权重,使与未知样本更近的邻居对分类结果产生更大的影响。通过调整不同的权重与距离的关系,可以控制邻居样本的影响程度,从而提升模型性能。 5. 分类决策规则:在确定未知样本类别时,可以使用多数投票法或加权投票法等。对于多数投票法来说,可以通过调整邻居样本的数量、类别平衡等来优化模型性能。 在调优超参数时,需要充分理解KNN分类器的原理,并结合实际问题和数据集特点来选择合适的超参数组合。通过比较不同参数组合下的模型性能,可以选择最优的超参数组合,从而提高KNN分类器的性能和泛化能力。 ### 回答3: k近邻分类器是一种基于实例的学习算法,其关键在于选择适合的超参数k值。超参数调优是为了找到最佳的k值,以获得最佳的分类性能。 首先,超参数的选择可以采用网格搜索的方法。即通过遍历不同的k值,并在每个k值下进行交叉验证,选择具有最佳性能的k值。这可以通过调用scikit-learn中的GridSearchCV函数来实现。该函数可以自动遍历所指定的超参数范围,并选择最佳的k值。 其次,可以通过学习曲线来分析k值对分类性能的影响。学习曲线是以训练集大小为横坐标,模型性能指标(如准确率)为纵坐标,绘制的曲线。可以通过调用GridSearchCV函数中的cv_results_属性来得到所有k值下的性能指标,然后绘制学习曲线,观察k值对性能的影响。在选择k值时,应选择在学习曲线中性能最好的区域。 此外,可以采用交叉验证来进行超参数调优。交叉验证可以帮助我们评估具有不同k值的分类器性能。通过调用scikit-learn中的cross_val_score函数,可以获得不同k值下的交叉验证准确率,然后选择具有最高准确率的k值。 最后,还可以使用特定问题领域的知识来指导超参数的选择。例如,对于某些问题,知道类别之间的距离或数据的特定属性可能会更有利于分类,因此也可以据此选择k值。 综上所述,在进行k近邻分类器的超参数调优时,可以考虑网格搜索、学习曲线分析、交叉验证和领域知识等方法,以找到最佳的k值,从而获得最佳的分类性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chen_XL1207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值