ENVI下基于知识决策树提取地表覆盖信息

本文介绍了如何使用基于知识的决策树分类方法,特别是CART算法,在ENVI环境中提取地表覆盖信息。通过准备多元数据集、获取规则和执行分类,实现了对Landsat8OLI数据的精确分类。经过验证,分类精度达到了预期要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。

决策树分类主要的工作是获取规则,本文介绍使用CART算法获取规则,基于规则提取土地覆盖信息。下图是总体技术流程。

图:总体技术流程图

在获取规则过程中,由于计算量较大,我们选择一部分典型的区域作为实验区获取决策树。

1. 准备数据

本文以L1T级的Landsat8OLI数据为例,数据已经过工程区裁剪。这一步主要是构建多元数据集。数据集由Landsat8OLI七个波段、NDVI、ISODATA非监督分类结果、DEM(具体使用那些数据可根据实际情况进行增减)。其中DEM使用30米的G-DEM,使用相同工程区矢量进行裁剪。

  • 在Toolbox中,选择/Spectral/Vegetation/NDVI,使用多光谱影像计算NDVI。
  • 在Toolbox中,选择/Classification/Unsupervised Classification/IsoData Classification,最大分类数量为10,迭代次数为10,选择路径输出分类结果。
  • 在Toolbox中,选择/Raster Management/ Layer Stacking(5版本改名为Build Layer Stack)&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值