摘要:大型语言模型的基本问答格式涉及输入提示并接收响应,而提示的质量直接影响响应的有效性。自动化提示优化(APO)旨在摆脱人工设计提示的认知偏差,并探索更广泛的提示设计空间。然而,现有的APO方法存在固定模板灵活性有限和提示空间搜索效率低下等关键问题。为此,我们提出了一种融入苏格拉底引导的多代理框架(MARS),该框架利用多代理融合技术进行自动规划,实现逐步连续优化和评估。具体而言,MARS包含七个具有不同功能的代理,它们自主使用规划器制定优化路径,以确保灵活性。此外,它还采用教师-评论家-学生苏格拉底对话模式,在有效搜索的同时迭代优化提示。我们在多个数据集上进行了大量实验,以验证我们方法的有效性,并进行了额外的分析实验,以评估模型的进步以及可解释性。Huggingface链接:Paper page,论文链接:2503.16874
研究背景和目的
研究背景
随着大型语言模型(LLMs)在自然语言处理领域的广泛应用,如何通过优化提示(prompt)来提高LLMs的性能成为了一个重要研究方向。LLMs的基本问答格式涉及输入提示并接收响应,而提示的质量直接影响了响应的有效性。然而,人工设计提示往往存在认知偏差,且难以应对多样化的任务需求。自动化提示优化(Automated Prompt Optimization, APO)旨在通过算法自动找到最佳的提示,以摆脱人工设计提示的限制,并探索更广泛的提示设计空间。
尽管现有的APO方法在一定程度上提高了LLMs的性能,但它们仍面临诸多挑战。首先,固定模板的灵活性有限,难以适应多样化的任务需求。其次,提示空间的搜索效率低下,导致难以找到全局最优的提示。这些问题限制了现有APO方法的有效性和泛化能力。
因此,研究一种更加灵活、高效的APO方法具有重要意义。通过引入多代理技术和苏格拉底引导的对话模式,我们有望解决现有APO方法存在的问题,提高LLMs在多样化任务上的性能。
研究目的
本研究旨在提出一种融入苏格拉底引导的多代理框架(MARS),以实现自动化提示优化。具体研究目的如下:
- 提出一种多代理框架:构建一个包含多个具有不同功能的代理的多代理系统,通过代理之间的协作实现自动化提示优化。
- 引入苏格拉底引导的对话模式:采用教师-评论家-学生苏格拉底对话模式,通过迭代提问和反馈来优化提示,提高搜索效率和提示质量。
- 验证方法的有效性:在多个数据集上进行实验,验证MARS框架在自动化提示优化任务上的有效性。
- 评估模型的进步和可解释性:通过额外的分析实验,评估MARS框架在提高LLMs性能和可解释性方面的优势。
研究方法
方法概述
本研究提出了一种融入苏格拉底引导的多代理框架(MARS)用于自动化提示优化。MARS框架包含七个具有不同功能的代理,它们通过协作实现提示的自动化优化。具体方法如下:
-
多代理框架构建:
- Manager代理:负责管理和调度其他代理,确保整个优化过程的顺利进行。
- UserProxy代理:负责接收用户输入和任务描述,为其他代理提供必要的信息支持。
- Planner代理:根据任务需求制定优化路径,为后续的优化过程提供指导。
- Teacher代理:采用苏格拉底提问方式,引导学生代理进行思考,逐步优化提示。
- Critic代理:评估教师代理提问的质量,并提供反馈以指导学生代理进行改进。
- Student代理:在教师代理的引导下,逐步优化提示,并生成最终的优化结果。
- Target代理:负责评估优化后的提示在目标任务上的性能,确保优化效果的有效性。
-
苏格拉底引导的对话模式:
- 教师提问:教师代理根据学生代理当前的提示和反馈,提出具有启发性的问题,引导学生代理进行深入思考。
- 评论家评估:评论家代理评估教师代理提问的质量,并提供反馈以指导学生代理进行改进。如果提问不符合要求,评论家代理将提供修改建议,教师代理将根据建议调整提问。
- 学生优化:在学生代理的引导下,逐步优化提示,并生成新的提示版本。然后,学生代理将新的提示版本提交给评论家代理进行评估。
- 迭代优化:通过多次迭代提问、评估和优化过程,逐步找到最优的提示。
-
优化路径制定:
- Planner代理根据任务需求制定优化路径,明确每个阶段的优化目标和步骤。优化路径将指导后续的提问、评估和优化过程。
-
提示优化与评估:
- 在优化过程中,Student代理在教师代理的引导下逐步优化提示。每次优化后,Target代理将评估优化后的提示在目标任务上的性能。
- 根据评估结果,Manager代理将决定是否需要继续优化。如果需要继续优化,Planner代理将调整优化路径,并启动下一轮的优化过程。
实验设置
-
数据集:
- 本研究在多个通用任务和领域特定任务的数据集上进行了实验,包括BBH、MMLU、C-Eval、GSM8K和LSAT-AR等。
-
基线方法:
- 本研究将MARS框架与多种基线方法进行了比较,包括原始提示、CoT提示、APE、ProTeGi、OPRO和PE2等。
-
评价指标:
- 本研究采用准确率作为主要的评价指标,以全面评估不同方法在各种任务场景下的性能。
研究结果
主要发现
-
性能提升:
- 在通用任务上,MARS框架显著优于所有基线方法,实现了6.04%的性能提升。与原始提示和CoT提示相比,MARS框架分别实现了20.16%和15.32%的性能提升。
- 在领域特定任务上,MARS框架也表现出色,超越了所有基线方法,实现了6.42%的性能提升。与原始提示和CoT提示相比,MARS框架分别实现了25.31%和20.72%的性能提升。
-
收敛速度:
- MARS框架在优化过程中表现出较快的收敛速度。在多个任务上,MARS框架在较少的迭代次数内就找到了较优的提示,显著降低了资源消耗。
-
可解释性:
- MARS框架提供了高度的可解释性。通过优化路径的制定和苏格拉底引导的对话模式,用户可以清晰地了解优化过程的每个步骤和决策依据。
-
泛化能力:
- MARS框架在不同的任务和数据集上均表现出良好的泛化能力。这表明MARS框架能够适应多样化的任务需求,并具有较高的鲁棒性。
研究局限
尽管MARS框架在自动化提示优化任务上取得了显著的效果,但仍存在一些局限性:
-
任务类型普适性:
- 目前,MARS框架主要针对的是问答任务。对于其他类型的任务(如文本生成、摘要等),MARS框架的适用性和效果尚需进一步验证。
-
环境反馈融入:
- MARS框架在优化过程中主要依赖于内部代理之间的协作和对话。如何更好地融入环境反馈,提高系统的交互性和错误纠正能力,是未来的一个重要研究方向。
-
更通用的提示表示:
- 目前,MARS框架主要采用的是文本形式的提示。如何设计更通用的提示表示形式,以适应不同的任务和数据集,是未来的另一个重要研究方向。
未来研究方向
针对上述研究局限,未来的研究可以从以下几个方面展开:
-
拓展任务类型:
- 探索MARS框架在其他类型任务(如文本生成、摘要等)上的适用性和效果,以验证其普适性和鲁棒性。
-
融入环境反馈:
- 研究如何更好地融入环境反馈,提高MARS框架的交互性和错误纠正能力。例如,可以引入用户反馈机制,让用户参与到优化过程中来,提供实时的反馈和指导。
-
设计更通用的提示表示:
- 研究如何设计更通用的提示表示形式,以适应不同的任务和数据集。例如,可以采用结构化的提示表示形式,以更好地描述任务需求和约束条件。
-
优化算法改进:
- 进一步研究优化算法,提高MARS框架在优化过程中的效率和效果。例如,可以引入更先进的搜索算法和机器学习技术,以加速优化过程并找到更优的提示。
-
多模态融合:
- 探索将MARS框架与多模态技术相结合的可能性,以处理更复杂的任务和数据集。例如,可以引入视觉和听觉信息来丰富提示内容,提高LLMs在多媒体任务上的性能。