随机过程(二)——随机过程导论(中)

条件数学期望

条件数学期望是随机数学中最基本最重要的概念之一,它在随机过程课程中具有广泛的应用,需要同学们很好地掌握。

条件概率分布

离散型随机变量的条件分布

对于离散型的随机变量 X X X Y ( Y( Y( 取值范围分别是 I \mathcal{I} I J ) \mathcal{J}) J) ,随机变量 Y Y Y 在 ${X=\mathrm{x}} $ 下的条件概率分布是
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \forall j \in …
同样的, X X X 在条件{ Y = y } Y=y\} Y=y} 下的条件概率分布是
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \forall i \in …
其中, P ( X = i , Y = j ) P(X=i, Y=j) P(X=i,Y=j) X X X Y Y Y 联合分布概率,即 X = i X=i X=i ,并且 Y = j Y=j Y=j 发生的概率。如果用 p i j p_{i j} pij 表示 P ( X = i , Y = j ) P(X=i, Y=j) P(X=i,Y=j) 的值 P ( X = i , Y = j ) = p i j P(X=i, Y=j)=p_{i j} P(X=i,Y=j)=pij 那么随机变量 X X X Y Y Y 的边缘分布就是
P ( X = i ) = p i . = ∑ j ∈ J p i j P ( Y = j ) = p . j = ∑ i ∈ I p i j \begin{aligned} &P(X=i)=p_{i .}=\sum_{j \in \mathcal{J}} p_{i j} \\ &P(Y=j)=p_{. j}=\sum_{i \in \mathcal{I}} p_{i j} \end{aligned} P(X=i)=pi.=jJpijP(Y=j)=p.j=iIpij
因此,随机变量 Y Y Y 在条件 { X = x } \{X=\mathrm{x}\} {X=x} 下的条件概率分布也可以表达为
p Y ∣ X ( j ) = P ( Y = j ∣ X = i ) = p i j p i .       ( p i . > 0 ) p_{Y \mid X}(j)=P(Y=j \mid X=i)=\frac{p_{i j}}{p_{i .}} \ \ \ \ \ \left(p_{i .}>0\right) pYX(j)=P(Y=jX=i)=pi.pij     (pi.>0)
同样的, X X X 在条件{ Y = y } Y=\mathrm{y}\} Y=y} 下的条件概率分布也可以表达为
p X ∣ Y ( i ) = p i j p . j       ( p . j > 0 ) p_{X \mid Y}(i)=\frac{p_{i j}}{p_{. j}}\ \ \ \ \ \left(p_{. j}>0\right) pXY(i)=p.jpij     (p.j>0)

连续型随机变量的条件分布

对于连续型的随机变量 X X X Y , P ( X = i ) = P ( Y = j ) = 0 Y , P(X=i)=P(Y=j)=0 YP(X=i)=P(Y=j)=0 ,因此对离散型随机变量的条件分布定义不适用。假设其联合密度函数为 f ( x , y ) f(x, y) f(x,y) X X X Y Y Y 的边缘密度函数分别是 f X ( x ) f_{X}(x) fX(x) f Y ( y ) f_{Y}(y) fY(y) , 那么 Y Y Y 在条件 { X = x } \{X=\mathrm{x}\} {X=x} 下的条件概率密度函数是
f Y ∣ X ( y ∣ x ) = f Y ( y ∣ X = x ) = f ( x , y ) f X ( x ) f_{Y \mid X}(y \mid x)=f_{Y}(y \mid X=x)=\frac{f(x, y)}{f_{X}(x)} fYX(yx)=fY(yX=x)=fX(x)f(x,y)
同样的, X X X 在条件 { Y = y } \{Y=y\} {Y=y} 下的条件概率密度函数是
f X ∣ Y ( x ∣ y ) = f X ( x ∣ Y = y ) = f ( x , y ) f Y ( y ) f_{X \mid Y}(x \mid y)=f_{X}(x \mid Y=y)=\frac{f(x, y)}{f_{Y}(y)} fXY(xy)=fX(xY=y)=fY(y)f(x,y)

∫ − ∞ x f X ∣ Y ( x ∣ y ) d x \int_{-\infty}^xf_{X|Y}(x|y)dx xfXY(xy)dx
为在条件 { Y = y } \{Y=y\} {Y=y} X X X 的条件分布函数,记为 F X ∣ Y ( x ∣ y ) F_{X|Y}(x|y) FXY(xy)
F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f X ∣ Y ( x ∣ y ) d x = ∫ − ∞ x f ( x , y ) f Y ( y ) d x F_{X|Y}(x|y)=\int_{-\infty}^xf_{X|Y}(x|y)dx=\int_{-\infty}^x\frac{f(x, y)}{f_{Y}(y)}dx FXY(xy)=xfXY(xy)dx=xfY(y)f(x,y)dx

条件分布和独立分布

在一定意义上,条件分布和独立分布是相对的。如果两个随机变量 X X X Y Y Y 是独立分布的,那么不论是否已知某个关于 X X X 的条件,都不会影响 Y Y Y 的概率分布。用数学语言来说,就是
P ( Y = y ∣ X = x ) = P ( Y = y ) = p Y ( y ) P(Y=y \mid X=x)=P(Y=y)=p_{Y}(y) P(Y=yX=x)=P(Y=y)=pY(y)
这与独立分布的定义是相合的,事实上,随机变量 X X X Y Y Y 相互独立分布,则
P ( Y = y , X = x ) = P ( Y = y ) ⋅ P ( X = x ) P(Y=y, X=x)=P(Y=y) \cdot P(X=x) P(Y=y,X=x)=P(Y=y)P(X=x)
因此
P ( Y = y ) = P ( Y = y , X = x ) P ( X = x ) = P ( Y = y ∣ X = x ) P(Y=y)=\frac{P(Y=y, X=x)}{P(X=x)}=P(Y=y \mid X=x) P(Y=y)=P(X=x)P(Y=y,X=x)=P(Y=yX=x)

离散型情形

定义 设二维离散型随机变量$(X , Y) 所 有 可 能 取 的 值 是 所有可能取的值是 (x_i,y_j) , 其 联 合 分 布 律 为 ,其联合分布律为 P{X=x_i,Y=y_j}=p_{ij}\geq 0$,记
E { X ∣ Y } = ^ ∑ j I ( Y = y j ) ( ω ) E { X ∣ Y = y j } E\{X\mid Y\}\hat{=}\sum_j I_{(Y=y_j)}(\omega)E\{X\mid Y=y_j\} E{XY}=^jI(Y=yj)(ω)E{XY=yj}
称$ E{X\mid Y} 为 为 X 关 于 关于 Y $的条件数学期望。

| E ( X ∣ Y ) E(X|Y) E(XY) | E ( X ∣ Y = y 1 ) E(X|Y=y_1) E(XY=y1) | E ( X ∣ Y = y 2 ) E(X|Y=y_2) E(XY=y2) | ⋯ \cdots | E ( X ∣ Y = y j ) E(X|Y=y_j) E(XY=yj) |
| :--------------------: | :----------: | :----------: | :------: | :----------: |
| P ( E ( X ∣ Y ) = E ( X ∣ Y = y j ) ) P(E(X|Y)=E(X|Y=y_j)) P(E(XY)=E(XY=yj)) | P ( Y = y 1 ) P(Y=y_1) P(Y=y1) | P ( Y = y 2 ) P(Y=y_2) P(Y=y2) | ⋯ \cdots | P ( Y = y j ) P(Y=y_j) P(Y=yj) |

注 1 定义中的 I ( Y = y j ) ( ω ) I_{(Y=y_j)}(\omega) I(Y=yj)(ω)是示性函数,即
KaTeX parse error: No such environment: align* at position 36: …=\left\{ \begin{̲a̲l̲i̲g̲n̲*̲}̲ 1&,\ \ \ \omeg…
注 2 条件数学期望$ E{X\mid Y} 是 随 机 变 量 是随机变量 Y $的函数,因此有关于它的分布,其分布为

E { X ∣ Y = y j } ≠ E { X ∣ Y = y k } ( j ≠ k ) E\{X\mid Y=y_j\}\neq E\{X\mid Y=y_k\}(j\neq k) E{XY=yj}=E{XY=yk}(j=k)时,
P { E { X ∣ Y } = E { X ∣ Y = y j } } = P { Y = y j } P\{E\{X\mid Y\}=E\{X\mid Y=y_j\}\}=P\{Y=y_j\} P{E{XY}=E{XY=yj}}=P{Y=yj}
否则,令 D j = { k : E { X ∣ Y = y k } = E { X ∣ Y = y j } } D_j=\{k:E\{X\mid Y=y_k\}=E\{X\mid Y=y_j\}\} Dj={k:E{XY=yk}=E{XY=yj}},则
P { E { X ∣ Y } = E { X ∣ Y = y j } } = ∑ k ∈ D j P { Y = y k } P\{E\{X\mid Y\}=E\{X\mid Y=y_j\}\}=\sum_{k\in D_j} P\{Y=y_k\} P{E{XY}=E{XY=yj}}=kDjP{Y=yk}
注 3 由于条件数学期望$ E{X\mid Y} 是 随 机 变 量 是随机变量 Y $的函数,故可以求其数学期望,其数学期望为
E { E { X ∣ Y } } = ∑ j E { X ∣ Y = y j } P { Y = y j } = E { X } E\{E\{X\mid Y\}\}=\sum_j E\{X\mid Y=y_j\}P\{Y=y_j\}=E\{X\} E{E{XY}}=jE{XY=yj}P{Y=yj}=E{X}
维基百科定义

X X X Y Y Y 是离散随机变量,则 X X X 在给定事件 Y = y Y=y Y=y 条件时的条件期望是 x x x 的在 Y Y Y 的值域的函数
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ E(X|Y=y)&=\sum…
其中, χ \chi χ 是处于 X X X 的值域。

例 9 离散型随机变量$(X ,Y) 的 联 合 分 布 律 如 下 表 所 示 , 试 求 的联合分布律如下表所示,试求 E{X\mid Y}$的分布律, E { X } , E { E { X ∣ Y } } E\{X\}, E\{E\{X \mid Y\}\} E{X},E{E{XY}}

Y / X123 p ⋅ j p_{\cdot j} pj
12/274/271/277/27
25/277/273/2715/27
31/272/272/275/27
p i ⋅ p_{i\cdot} pi8/2713/276/271

连续型情形

定义 设二维随机变量具有联合分布密度函数$ f (x, y)$ ,$Y 的 边 缘 分 布 为 的边缘分布为 f_Y ( y) , 若 随 机 变 量 ,若随机变量 E{X\mid Y}$满足

(a)$ E{X\mid Y} 是 随 机 变 量 是随机变量 Y 的 函 数 , 当 的函数,当 Y = y 时 , 它 的 取 值 为 时,它的取值为 E{X\mid Y=y}$;

(b)对于任意的事件$ D $,有
E { E { X ∣ Y } ∣ Y ∈ D } = E { X ∣ Y ∈ D } E\{E\{X\mid Y\}\mid Y\in D\}=E\{X\mid Y \in D\} E{E{XY}YD}=E{XYD}
则称随机变量$ E{X\mid Y} 为 为 X 关 于 关于 Y $的条件数学期望。

维基百科定义

如果现在 X X X 是一个连续随机变量,而 Y Y Y 仍然是一个离散变量,条件期望是
E { X ∣ Y = y } = ∫ − ∞ + ∞ x f X ( x ∣ Y = y ) d x E\{X|Y=y\}=\int_{-\infty}^{+\infty}xf_{X}(x|Y=y)dx E{XY=y}=+xfX(xY=y)dx
其中, f X ( ⋅ ∣ Y = y ) f_X(\cdot\mid Y=y) fX(Y=y) 是在给定 Y = y Y=y Y=y X X X 的条件概率密度函数。

注 1 由于条件数学期望$ E{X\mid Y} 是 随 机 变 量 是随机变量 Y $的函数,故可以求其数学期望,其数学期望为
E { E { X ∣ Y } } = ∫ − ∞ + ∞ E ( X ∣ Y = y ) f Y ( y ) d y = E { X } E\{E\{X\mid Y\}\}=\int_{-\infty}^{+\infty}E(X\mid Y=y)f_Y(y)dy=E\{X\} E{E{XY}}=+E(XY=y)fY(y)dy=E{X}
例 10 ( X , Y ) ∼ N ( μ 1 , μ 2 , ρ , σ 1 2 , σ 2 2 ) (X,Y)\sim N(\mu_1,\mu_2,\rho,\sigma_1^2,\sigma_2^2) (X,Y)N(μ1,μ2,ρ,σ12,σ22),则有
E { Y ∣ X = x } = μ 2 + ρ σ 2 σ 1 ( x − μ 1 ) E { Y ∣ X } = μ 2 + ρ σ 2 σ 1 ( X − μ 1 ) E\{Y\mid X=x\}=\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1)\\ E\{Y\mid X\}=\mu_2+\rho\frac{\sigma_2}{\sigma_1}(X-\mu_1) E{YX=x}=μ2+ρσ1σ2(xμ1)E{YX}=μ2+ρσ1σ2(Xμ1)
先求$Y 关 于 关于 X = x $的条件分布密度,
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ &f_{Y\mid X=x}…

f Y ∣ X = x ( y ∣ x ) ∼ N [ μ 2 + ρ σ 2 σ 1 − 1 ( x − μ 1 ) , σ 2 2 ( 1 − ρ 2 ) ] f_{Y\mid X=x}(y\mid x)\sim N[\mu_2+\rho\sigma_2\sigma_1^{-1}(x-\mu_1),\sigma_2^2(1-\rho^2)] fYX=x(yx)N[μ2+ρσ2σ11(xμ1),σ22(1ρ2)]

KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ E\{Y\mid X=x\}…

E { Y ∣ X } = μ 2 + ρ σ 2 σ 1 − 1 ( X − μ 1 ) E\{Y\mid X\}=\mu_2+\rho\sigma_2\sigma_1^{-1}(X-\mu_1) E{YX}=μ2+ρσ2σ11(Xμ1)

条件数学期望的性质

在各给定的随机变量的数学期望存在的条件下,我们有

(a) E { X } = E { E { X ∣ Y } } E\{X\} = E\{E\{X\mid Y\}\} E{X}=E{E{XY}}

(b) E { ∑ i = 1 n α i X i ∣ Y } = ∑ i = 1 n α i E { X i ∣ Y } E\left\{\sum_{i=1}^n\alpha_iX_i\mid Y\right\}=\sum_{i=1}^n\alpha_iE\{X_i\mid Y\} E{i=1nαiXiY}=i=1nαiE{XiY} a.s. ;其中 α i ( 1 ≤ i ≤ n ) \alpha_i(1\leq i\leq n) αi(1in)为常数;

(c) E { g ( X ) h ( Y ) ∣ Y } = h ( Y ) E { g ( X ) ∣ Y } E\{g(X )h(Y) |Y\} = h(Y)E\{g(X ) |Y\} E{g(X)h(Y)Y}=h(Y)E{g(X)Y} a.s.

(d) E { g ( X ) h ( Y ) } = E { h ( Y ) E { g ( X ) ∣ Y } } E\{g(X )h(Y)\} = E\{h(Y)E\{g(X )| Y\}\} E{g(X)h(Y)}=E{h(Y)E{g(X)Y}}

(e) 如果$ X$ ,$ Y 独 立 , 则 有 独立,则有 E{X| Y} = E{X}$;

a.s. 是“almost sure”的简写,意思是“基本确定”。在一般意义下,公式所得结论在一个集合以内的任何情况下成立,以外的集合基本没有。或者,在概率论中也称为以概率基本为一,即结论不成立的概率为零。

证明 ( X , Y ) ∼ f ( x , y ) (X ,Y) \sim f (x, y) (X,Y)f(x,y),则有
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ E\{g(X)h(Y)\}&…
注 1 常用的计算式子
E { g ( X ) h ( y ) } = ∫ − ∞ + ∞ E { g ( X ) ∣ Y = y } h ( x ) f Y ( y ) d y E\{g(X)h(y)\}=\int_{-\infty}^{+\infty}E\{g(X)\mid Y=y\}h(x)f_Y(y)dy E{g(X)h(y)}=+E{g(X)Y=y}h(x)fY(y)dy

P { A } = ∫ − ∞ + ∞ P { A ∣ Y = y } f Y ( y ) d y P\{A\}=\int_{-\infty}^{+\infty}P\{A\mid Y=y\}f_Y(y)dy P{A}=+P{AY=y}fY(y)dy

P { X ≤ x } = ∫ − ∞ + ∞ P { X ≤ x ∣ Y = y } f Y ( y ) d y P\{X\leq x\}=\int_{-\infty}^{+\infty}P\{X\leq x\mid Y=y\}f_Y(y)dy P{Xx}=+P{XxY=y}fY(y)dy

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值