随机过程(一)——随机过程导论(上)

课程讲师

孙应飞,博士(后) ,中国科学院大学教授,博士生导师

工作单位 中国科学院大学信息科学与工程学院

课程链接 随机过程 孙应飞_哔哩哔哩_bilibili

知识基础

概率论与数理统计、复变函数、常微分方程、信号与系统

教材

陆大金 《随机过程及其应用》,清华大学出版社

主要参考书

林元烈 《应用随机过程》,清华大学出版社

复旦大学编 《概率论第三册 随机过程》,高等教育出版社

概率论背景

随机变量 从样本空间到实数域的单值映射

样本空间 随机试验所有可能的结果的集合

N维随机变量

极限定理 无穷多个随机变量

随机过程 研究一族无穷多个、相互有关的随机变量

随机过程的概念

定义 ( Ω , Σ , P ) (\Omega,\Sigma,P) (Ω,Σ,P)是一维概率空间,对每一个参数 t ∈ T t\in T tT X ( t , ω ) X(t,\omega) X(t,ω)是一定义在概率空间 ( Ω , Σ , P ) (\Omega,\Sigma,P) (Ω,Σ,P) 上的随机变量,则称随机变量族 X T = { X ( t , ω ) ; t ∈ T } X_T=\{X(t,\omega);t\in T\} XT={X(t,ω);tT}为该概率空间上的一随机过程。其中 T ⊂ R T\subset R TR是一实数集,称为指标集或参数集。

  • Ω \Omega Ω是样本空间, Σ \Sigma Σ是由样本空间的某些子集构成的集合, P P P是一个概率
  • 给定一个 t t t以后, X ( t , ω ) X(t,\omega) X(t,ω)是定义在 Ω \Omega Ω下的一个函数
  • ω \omega ω Ω \Omega Ω里面的某些点

随机过程的两种描述方法

用映射表示 X T X_T XT
X ( t , ω ) : T × ω → R X(t,\omega):T\times\omega\rightarrow R X(t,ω):T×ωR
X ( ⋅ , ⋅ ) X(\cdot,\cdot) X(,)是一定义在 T × R T\times R T×R上的二元单值函数,固定 t ∈ T t\in T tT X ( t , ⋅ ) X(t,\cdot) X(t,)是一定义在样本空间 Ω \Omega Ω上的函数,即为一随机变量;对于固定的 ω ∈ Ω \omega\in\Omega ωΩ X ( ⋅ , ω ) X(\cdot,\omega) X(,ω)是一个关于参数 t ∈ T t\in T tT的函数,通常称为样本函数,或称随机过程的一次实现,所有样本函数的集合确定一随机过程。记号 X ( t , ω ) X(t,\omega) X(t,ω)有时记为 X t ( ω ) X_t(\omega) Xt(ω)或简记为 X ( t ) X(t) X(t)

参数 T T T一般表示时间或空间。常用的参数一般有

  1. T = N 0 = { 0 , 1 , 2 , ⋯   } T=N_0=\{0,1,2,\cdots\} T=N0={0,1,2,}
  2. T = { 0 , ± 1 , ± 2 , ⋯   } T=\{0,\pm1,\pm2,\cdots\} T={0,±1,±2,}
  3. T = [ a , b ] T=[a,b] T=[a,b],其中 a a a可以取 0 0 0 − ∞ -\infty b b b可以取 + ∞ +\infty +

当参数取可列集时,一般称随机过程为随机序列。

随机过程 { X ( t ) ; t ∈ T } \{X(t);t\in T\} {X(t);tT}可能取值的全体所构成的集合称为此随机过程的状态空间,记作 S S S S S S中的元素称为状态。状态空间可以由复数、实数或更一般的抽象空间构成。

例1 抛掷一枚硬币,样本空间为 Ω = { H , T } \Omega=\{H,T\} Ω={H,T},借此定义
KaTeX parse error: No such environment: align* at position 21: …=\left\{ \begin{̲a̲l̲i̲g̲n̲*̲}̲ &cos\pi t,&当出现…
其中 P { H } = P { T } = 1 / 2 P\{H\}=P\{T\}=1/2 P{H}=P{T}=1/2,则 { X ( t ) , t ∈ ( − ∞ , + ∞ ) } \{X(t),t\in (-\infty,+\infty)\} {X(t),t(,+)}十一随机过程,试考察其样本函数和状态空间。

样本函数有两条,状态空间为 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)

例2
X ( t ) = A c o s ( ω t + θ ) ,   t ∈ ( − ∞ , + ∞ ) X(t)=Acos(\omega t+\theta),\ t\in(-\infty,+\infty) X(t)=Acos(ωt+θ), t(,+)
其中 A A A ω \omega ω是正常数, θ ∼ U ( 0 , 2 π ) \theta\sim U(0,2\pi) θU(0,2π)。试考察其样本函数和状态空间。

样本函数有无穷多条,状态空间为 [ − A , A ] [-A,A] [A,A]

例3 设正弦随机过程 { X ( t ) ; − ∞ < t < + ∞ } \{X (t); − ∞ < t < +∞\} {X(t);<t<+},其中 X ( t ) = A c o s ω t X (t) = Acosωt X(t)=Acosωt ω ω ω是常数, A ∼ U [ 0 , 1 ] A\sim U[0, 1] AU[0,1]。试求 (1)画出 $X (t) 的 样 本 函 数 ; ( 2 ) 确 定 过 程 的 状 态 空 间 ; ( 3 ) 求 的样本函数;(2)确定过程的状态空间;(3)求 23t = 0, π / 4ω, 3π / 4ω,π /ω, π / 2ω $时 X ( t k ) X (t_k) X(tk)的密度函数。

样本函数无穷多条;状态空间 [ − 1 , 1 ] [-1,1] [1,1]

例 4 质点在直线上的随机游动,令 X n X_n Xn为质点在 n n n时刻时所处的位置,试考察其样本函数和状态空间。

( − ∞ , + ∞ ) (-\infty,+\infty) (,+)

例 5 考察某“服务站”在 [ 0 , t ] [0, t] [0,t]时间内到达的“顾客”数,记为 N ( t ) N(t) N(t),则$ {N(t), t ≥ 0} 是 一 随 机 过 程 , 试 考 察 其 样 本 函 数 和 状 态 空 间 。 若 记 是一随机过程,试考察其样本函数和状态空间。若记 S_n$为第 n n n 个 “顾客”到达的时刻,则${ S_n , n =1,2,\cdots} $ 为一随机序列,我们自然要关心${ S_n , n =1,2,\cdots} $ 的情况以及它与随机过程 { N ( t ) , t ≥ 0 } \{N(t), t ≥ 0\} {N(t),t0}的关系,这时要将两个随机过程作为一个整体来研究其概率特性(统计特性)。

例6 布朗运动

随机过程的分类

随机过程的分类一般有两种方法

(1)以参数集和状态空间的特征来分类;

(2)以统计特征或概率特征来分类。

我们分述如下

以参数集和状态空间的特性分类

以参数集$T $的性质,随机过程可分为两大类

  • T T T 可列
  • T T T 不可列

以状态空间$ S$ 的性质,即$ X (t) $所取的值的特征,随机过程也可以分为两大类

  • 离散状态,即 $X (t) $所取的值是离散的
  • 连续状态,即$ X (t) $所取的值是连续的

由此可将随机过程分为以下四类

(a) 离散参数离散型随机过程;

(b) 连续参数离散型随机过程;

(c) 连续参数连续型随机过程;

(d) 离散参数连续型随机过程。

以随机过程的统计特征或概率特征分类

以随机过程的统计特征或概率特征来进行分类,一般有以下一些

(a) 独立增量过程;

(b) Markov 过程;

(c) 二阶矩过程;

(d) 平稳过程;

(e) 鞅;

(f) 更新过程;

(g) Poission 过程;

(h) 维纳过程。

注意 以上两种对随机过程的分类方法并不是独立的,比如,我们以后要讨 论的 Markov 过程,就有参数离散状态空间离散的 Markov 过程,即 Markov 链, 也要讨论参数连续状态离散的 Markov 过程,即纯不连续 Markov 过程。在下面 几章中,我们将研究几种重要的、应用非常广泛的随机过程。

随机过程的数字特征

为什么要研究随机过程的数字特征?

实际生活中随机变量的概率密度函数、分布函数往往是不知道的,这是只有通过观察、统计学的手段来得出随机过程的数字特征,然后通过研究数字特征来了解随机变量的性质,以及随机现象的规律性。

单个随机过程的情形

{ X ( t ) ; t ∈ T } \{X (t); t∈T\} {X(t);tT}是一随机过程,为了刻画它的统计特征,通常要用到随机过程的数字特征,即随机过程的均值函数、方差函数、协方差函数和相关函数。下面我们给出它们的定义。

a) 均值函数(确定的函数,没有随机性) 随机过程 { X ( t ) ; t ∈ T } \{X (t); t∈T\} {X(t);tT}的均值函数定义为 (假设存在)
μ X ( t ) = ^ m ( t ) = E { X ( t } \mu_X(t)\hat{=}m(t)=E\{X(t\} μX(t)=^m(t)=E{X(t}

注 如果均值发散,称随机变量的均值不存在。

b) 方差函数 随机过程 { X ( t ) ; t ∈ T } \{X (t); t∈T\} {X(t);tT}的方差函数定义为 (假设存在)
σ X 2 ( t ) = ^ D X ( t ) = E { [ X ( t ) − μ X ( t ) ] 2 } \sigma_X^2(t)\hat{=}D_X(t)=E\{[X(t)-\mu_X(t)]^2\} σX2(t)=^DX(t)=E{[X(t)μX(t)]2}
注 均值函数和方差函数反映随机变量的一维特性。

c) (自)协方差函数(反映线性关系) 随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT}的(自)协方差函数定义为
C X ( s , t ) = ^ E { [ X ( s ) − μ X ( s ) ] [ X ( t ) − μ X ( t ) ] } C_X(s,t)\hat{=}E\{[X(s)-\mu_X(s)][X(t)-\mu_X(t)]\} CX(s,t)=^E{[X(s)μX(s)][X(t)μX(t)]}
注 反映二维特性。任取两个时刻,反应两个时刻取值之间的关系。

d) (自)相关函数 随机过程 { X ( t ) ; t ∈ T } \{X (t); t∈T\} {X(t);tT}的(自)相关函数定义为
R X ( s , t ) = ^ E { X ( s ) X ( t ) } R_X(s,t)\hat{=}E\{X(s)X(t)\} RX(s,t)=^E{X(s)X(t)}
注 协方差函数的推广。工程上用的最多。

e) 特征函数 记
ϕ X ( u 1 , u 2 , ⋯   , u n ; t 1 , t 2 , ⋯   , t n ) = ^ E { e x p { j [ u 1 X ( t 1 ) + u 2 X ( t 2 ) + ⋯ + u n X ( t n ) ] } } \phi_X(u_1,u_2,\cdots,u_n;t_1,t_2,\cdots,t_n)\hat{=}E\{exp\{j[u_1X(t_1)+u_2X(t_2)+\cdots+u_nX(t_n)]\}\} ϕX(u1,u2,,un;t1,t2,,tn)=^E{exp{j[u1X(t1)+u2X(t2)++unX(tn)]}}

{ ϕ X ( u 1 , u 2 , ⋯   , u n ; t 1 , t 2 , ⋯   , t n ) , t 1 , t 2 , ⋯   , t n ∈ T , n ≥ 1 } \{\phi_X(u_1,u_2,\cdots,u_n;t_1,t_2,\cdots,t_n),t_1,t_2,\cdots,t_n\in T,n\geq1\} {ϕX(u1,u2,,un;t1,t2,,tn),t1,t2,,tnT,n1}
为随机过程 { X ( t ) ; t ∈ T } \{X (t); t∈T\} {X(t);tT}的有限维特征函数族。

数字特征之间的关系

KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ C_X(s,t)&{\hat…

σ X 2 ( t ) = D X ( t ) = C X ( t , t ) = R X ( t , t ) − [ μ X ( t ) ] 2 \sigma_X^2(t)=D_X(t)=C_X(t,t)=R_X(t,t)-[\mu_X(t)]^2 σX2(t)=DX(t)=CX(t,t)=RX(t,t)[μX(t)]2

例 7 考察上面的例 1,(1)写出 X ( t ) X (t) X(t) 的一维分布列$ X (1/ 2), X (1)$ ;(2) 写出 $X (t) 的 二 维 分 布 列 的二维分布列 (X (1/ 2), X (1))$;(3)求该过程的均值函数和相关函数。

例 8 求例 2 中随机过程的均值函数和相关函数。

两个随机过程的情形

{ X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}是两个随机过程,它们具有相同的参数集, 对于它们的数字特征,除了有它们自己的数字特征外,我们还有

(a) 互协方差函数(两个随机变量有没有线性关系) 随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}的互协方差函数定义为
C X Y ( s , t ) = ^ E { [ X ( s ) − μ X ( s ) ] [ Y ( t ) − μ Y ( t ) ] } C_{XY}(s,t)\hat{=}E\{[X (s)-\mu_X(s)][Y(t)-\mu_Y(t)]\} CXY(s,t)=^E{[X(s)μX(s)][Y(t)μY(t)]}
(b) 互相关函数 随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}的互相关函数定义为
R X Y ( s , t ) = ^ E { X ( s ) Y ( t ) } R_{XY}(s,t)\hat{=}E\{X (s)Y(t)\} RXY(s,t)=^E{X(s)Y(t)}
互协方差函数和互相关函数有以下的关系
C X Y ( s , t ) = R X Y ( s , t ) − μ X ( s ) ⋅ μ Y ( t ) C_{XY}(s,t)=R_{XY}(s,t)-\mu_X(s)\cdot\mu_Y(t) CXY(s,t)=RXY(s,t)μX(s)μY(t)
如果两个随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT} ,对于任意的两个参数$ s,t ∈T $,有
C X Y ( s , t ) = 0 C_{XY} (s,t) = 0 CXY(s,t)=0

R X Y ( s , t ) = μ X ( s ) μ Y ( t ) = E { X ( s ) } ⋅ E { Y ( t ) } R_{XY}(s,t)=\mu_X(s)\mu_Y(t)=E\{X (s)\}\cdot E\{Y(t)\} RXY(s,t)=μX(s)μY(t)=E{X(s)}E{Y(t)}
则称随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}是统计不相关的或不相关的。

有限维分布族

{ X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT}是一随机过程,对于 ∀ n ∈ N , ∀ t ∈ T ( 1 ≤ i ≤ n ) ∀n∈ N,\forall t\in T(1\leq i\leq n) nN,tT(1in),记
F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , ⋯   , X ( t n ) ≤ x n } F_X(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n)\\ =P\{X(t_1)\leq x_1,X(t_2)\leq x_2,\cdots,X(t_n)\leq x_n\} FX(x1,x2,,xn;t1,t2,,tn)=P{X(t1)x1,X(t2)x2,,X(tn)xn}
其全体
{ F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ) , t 1 , t 2 , ⋯   , t n ∈ T , n ≥ 1 } \{F_X(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n),t_1,t_2,\cdots,t_n\in T,n\geq 1\} {FX(x1,x2,,xn;t1,t2,,tn),t1,t2,,tnT,n1}
称为随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT}的有限维分布族。它具有以下的性质

(1) 对称性 对 ( 1 , 2 , ⋯   , n ) (1,2,\cdots,n) (1,2,,n) 的任意排列$( j_1 , j_2 ,\cdots, j_n ) $,则有
F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ) = F X ( x j 1 , x j 2 , ⋯   , x j n ; t j 1 , t j 2 , ⋯   , t j n ) F_X(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n)=F_X(x_{j_1},x_{j_2},\cdots,x_{j_n};t_{j_1},t_{j_2},\cdots,t_{j_n}) FX(x1,x2,,xn;t1,t2,,tn)=FX(xj1,xj2,,xjn;tj1,tj2,,tjn)
(2) 相容性 对于 m < n m < n m<n ,有
F X ( x 1 , x 2 , ⋯   , x m , + ∞ , ⋯   , + ∞ ; t 1 , t 2 , ⋯   , t m , t m + 1 , ⋯   , t n ) = F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t m ) F_X(x_1,x_2,\cdots,x_m,+\infty,\cdots,+\infty;t_1,t_2,\cdots,t_m,t_{m+1},\cdots,t_n)\\ =F_X(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_m) FX(x1,x2,,xm,+,,+;t1,t2,,tm,tm+1,,tn)=FX(x1,x2,,xn;t1,t2,,tm)
注 1 随机过程的统计特性完全由它的有限维分布族决定。

注 2 有限维分布族与有限维特征函数族相互唯一确定。

问题 一个随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT}的有限维分布族,是否描述了该过程的全部概率特性?解决此问题有以下著名的定理,此定理是随机过程理论的基础。

定理 (Kolmogorov 存在性定理)

设分布函数族 { F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ) , t 1 , t 2 , ⋯   , t n ∈ T , n ≥ 1 } \{F_X(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n),t_1,t_2,\cdots,t_n\in T,n\geq 1\} {FX(x1,x2,,xn;t1,t2,,tn),t1,t2,,tnT,n1}满足以上提到的对称性和相容性,则必存在唯一的随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT},使 { F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ) , t 1 , t 2 , ⋯   , t n ∈ T , n ≥ 1 } \{F_X(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n),t_1,t_2,\cdots,t_n\in T,n\geq 1\} {FX(x1,x2,,xn;t1,t2,,tn),t1,t2,,tnT,n1}恰好是 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT}的有限维分布族,即
F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , ⋯   , X ( t n ) ≤ x n } F_X(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n)\\ =P\{X(t_1)\leq x_1,X(t_2)\leq x_2,\cdots,X(t_n)\leq x_n\} FX(x1,x2,,xn;t1,t2,,tn)=P{X(t1)x1,X(t2)x2,,X(tn)xn}
定理说明了随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT}的有限维分布族包含了 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT}的所有概率信息。因此,研究随机过程的统计特征可以通过研究其有限维分布函数族的特性来达到。

两个随机过程的独立性

{ X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}是两个随机过程,它们具有相同的参数集, 任取$n,m∈ N , 以 及 ,以及 t_1 ,t_2 ,\cdots,t_n ∈T ,t_1′,t_2′,\cdots,t_m^ ′ ∈T , 则 称 ,则称 n + m 维 随 机 向 量 维随机向量 (X(t_1),X(t_2),\cdots,X(t_n),Y(t_1{'}),Y(t_2{‘}),\cdots,Y(t_m^{’}))$的联合分布函数
F X Y ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ; y 1 , y 2 , ⋯   , y m ; t 1 ′ , t 2 ′ , ⋯   , t m ′ ) = P { X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , ⋯   , X ( t n ) ≤ x n , Y ( t 1 ′ ) ≤ y 1 , Y ( t 2 ′ ) ≤ y 2 , ⋯   , Y ( t n ′ ) ≤ y m } F_{XY}(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n;y_1,y_2,\cdots,y_m;t_1^{'},t_2^{'},\cdots,t_m^{'})\\ =P\{X(t_1)\leq x_1,X(t_2)\leq x_2,\cdots,X(t_n)\leq x_n,Y(t_1^{'})\leq y_1,Y(t_2^{'})\leq y_2,\cdots,Y(t_n^{'})\leq y_m\} FXY(x1,x2,,xn;t1,t2,,tn;y1,y2,,ym;t1,t2,,tm)=P{X(t1)x1,X(t2)x2,,X(tn)xn,Y(t1)y1,Y(t2)y2,,Y(tn)ym}
为随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT} n + m n+m n+m维联合分布函数。

如果对于任取的 n , m ∈ N n,m\in N n,mN,以及任意的$t_1 ,t_2 ,\cdots,t_n ∈T ,t_1′,t_2′,\cdots,t_m^ ′ ∈T , 随 机 过 程 , 随机过程 {X (t); t ∈T} 和 和 {Y(t); t ∈T}$的联合分布函数满足
F X Y ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ; y 1 , y 2 , ⋯   , y m ; t 1 ′ , t 2 ′ , ⋯   , t m ′ ) = F X ( x 1 , x 2 , ⋯   , x n ; t 1 , t 2 , ⋯   , t n ) ⋅ F Y ( y 1 , y 2 , ⋯   , y m ; t 1 ′ , t 2 ′ , ⋯   , t m ′ ) F_{XY}(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n;y_1,y_2,\cdots,y_m;t_1^{'},t_2^{'},\cdots,t_m^{'})\\ =F_{X}(x_1,x_2,\cdots,x_n;t_1,t_2,\cdots,t_n)\cdot F_{Y}(y_1,y_2,\cdots,y_m;t_1^{'},t_2^{'},\cdots,t_m^{'}) FXY(x1,x2,,xn;t1,t2,,tn;y1,y2,,ym;t1,t2,,tm)=FX(x1,x2,,xn;t1,t2,,tn)FY(y1,y2,,ym;t1,t2,,tm)
则称随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}是独立的。

随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}独立可以得到随机过程 { X ( t ) ; t ∈ T } \{X (t); t ∈T\} {X(t);tT} { Y ( t ) ; t ∈ T } \{Y(t); t ∈T\} {Y(t);tT}统计不相关,反之不对。但对于正态过程来说是等价的,这一点我们以后将看到。

δ \delta δ-函数及离散型随机变量分布列的 δ \delta δ-函数表示

δ \delta δ-函数(Dirac函数)的定义及性质

定义 对于任意的无穷次可微的函数 f ( t ) f(t) f(t),如果满足
∫ − ∞ + ∞ δ ( t ) f ( t ) d t = lim ⁡ ϵ → 0 ∫ − ∞ + ∞ δ ε ( t ) f ( t ) d t \int_{-\infty}^{+\infty}\delta(t)f(t)dt=\lim_{\epsilon\rightarrow0}\int_{-\infty}^{+\infty}\delta_{\varepsilon}(t)f(t)dt +δ(t)f(t)dt=ϵ0lim+δε(t)f(t)dt
其中
KaTeX parse error: No such environment: align* at position 40: …=\left\{ \begin{̲a̲l̲i̲g̲n̲*̲}̲ 0&,\ t<0\\ \fr…
则称 δ ε ( t ) \delta_\varepsilon(t) δε(t)的弱极限为 δ − \delta- δ函数,记为 δ ( t ) \delta(t) δ(t)

显然,对于任意的 ε > 0 \varepsilon>0 ε>0,有
lim ⁡ ϵ → 0 ∫ − ∞ + ∞ δ ε ( t ) d t = ∫ 0 ε 1 ε = 1 \lim_{\epsilon\rightarrow0}\int_{-\infty}^{+\infty}\delta_{\varepsilon}(t)dt=\int_0^\varepsilon\frac{1}{\varepsilon}=1 ϵ0lim+δε(t)dt=0εε1=1

∫ − ∞ + ∞ δ ( t ) d t = 1 \int_{-\infty}^{+\infty}\delta(t)dt=1 +δ(t)dt=1
注 1 $δ (t) 在 在 t = 0 $点的取值为 ∞ ∞ ,在 t ≠ 0 t ≠ 0 t=0 点的取值为 0 0 0,并且满足 ∫ − ∞ + ∞ δ ( t ) d t = 1 \int_{-\infty}^{+\infty}\delta(t)dt=1 +δ(t)dt=1

注 2 工程(信号处理等)上 δ - δ - δ函数也称为单位脉冲函数或单位冲激函数。

$ δ -$函数的筛选性质

若$ f (t) $为无穷次可微的函数,则有
∫ I δ ( t ) f ( t ) d t = f ( 0 ) ∫_Iδ(t) f (t)dt= f (0) Iδ(t)f(t)dt=f(0)
其中 $I 是 包 含 点 是包含点 t = 0$的任意区间。特殊地,有
∫ − ∞ + ∞ δ ( t ) f ( t ) d t = f ( 0 ) ∫^{+∞}_ {−∞} δ(t) f (t)dt = f (0) +δ(t)f(t)dt=f(0)
更一般地,我们有
∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 ) ∫^{+∞}_ {−∞} δ(t-t_0) f (t)dt = f (t_0) +δ(tt0)f(t)dt=f(t0)

离散型随机变量分布列的 δ - δ - δ函数表示

设离散型随机变量$ X$ 的分布列为 P { X = x i } = p i    i = 1 , 2 , ⋯ P\{X = x_i \} = p_i\ \ i =1,2,\cdots P{X=xi}=pi  i=1,2,,则由$δ - $函数的筛选性质可以定义离散型随机变量 X X X 的分布密度(离散型分布密度)为
f ( x ) = ∑ i = 1 ∞ p i δ ( x − x i ) f(x)=\sum_{i=1}^\infty p_i\delta(x-x_i) f(x)=i=1piδ(xxi)
因为,由 δ - δ - δ函数的筛选性质,离散型随机变量$ X$ 的分布函数可以表示为
F ( X ) = P { X ≤ x } = ∑ x i ≤ x p i = ∫ − ∞ x ∑ i = 1 ∞ p i δ ( u − x i ) d u F(X)=P\{X\leq x\}=\sum_{x_i\leq x}p_i=\int_{-\infty}^x\sum_{i=1}^\infty p_i\delta(u-x_i)du F(X)=P{Xx}=xixpi=xi=1piδ(uxi)du
注 工程上,常用离散型随机变量分布列的 δ - δ - δ函数表示法。它将离散型随机变量的分布列表示成分布密度的形式,因此与连续型随机变量的概率分布密度函数一样,可以进行统一处理。在下面的例子中我们将看到它的应用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值