随机过程(三)——随机过程导论(下)

随机过程举例

例 a 如果正弦波随机过程为
X ( t ) = A cos ⁡ ( ω t + θ ) X(t)=A \cos (\omega t+\theta) X(t)=Acos(ωt+θ)
其中振幅 A A A 取常数,角频率 ω \omega ω 取常数,而相位 θ \theta θ 是一个随机变量,它均匀分布 于 ( − π , π ) (-\pi, \pi) (π,π) 之间,即
f θ ( x ) = { 1 2 π , − π ≤ x ≤ π 0 ,  其它  f_{\theta}(x)=\left\{\begin{array}{cc} \frac{1}{2 \pi}, & -\pi \leq x \leq \pi \\ 0, & \text { 其它 } \end{array}\right. fθ(x)={2π1,0,πxπ 其它 
求在 t t t 时刻 X ( t ) X(t) X(t) 的概率密度。
固定时刻 t t t ,则随机变量 X ( t ) = A cos ⁡ ( ω t + θ ) X(t)=A \cos (\omega t+\theta) X(t)=Acos(ωt+θ) 是随机变量 θ \theta θ 的函数。
由分布函数的定义
F X ( t ) ( y ) = P { X ( t ) ≤ y } = P { A cos ⁡ ( ω t + θ ) ≤ y } F_{X(t)}(y)=P\{X(t) \leq y\}=P\{A \cos (\omega t+\theta) \leq y\} FX(t)(y)=P{X(t)y}=P{Acos(ωt+θ)y}
y < − A y<-A y<A 时, F X ( t ) ( y ) = 0 F_{X(t)}(y)=0 FX(t)(y)=0; 当 y ≥ + A y \geq+A y+A 时, F X ( t ) ( y ) = 1 F_{X(t)}(y)=1 FX(t)(y)=1
− A ≤ y < + A -A \leq y<+A Ay<+A 时,我们有
F X ( t ) ( y ) = P { X ( y ) ≤ y } = P { A cos ⁡ ( ω t + θ ) ≤ y } = P ( { − π < θ ≤ ω t − arccos ⁡ y A } ∪ { arccos ⁡ y A − ω t < θ ≤ π } ) = 1 2 π [ ∫ − π ω t − arccos ⁡ y A d x + ∫ arccos ⁡ y A ω t π d x ] = 1 2 π [ ω t − arccos ⁡ y A + π + π − arccos ⁡ y A + ω t ] = 1 π [ ω t + π − arccos ⁡ y A ] \begin{aligned} F_{X(t)}(y) &=P\{X(y) \leq y\}\\ &=P\{A \cos (\omega t+\theta) \leq y\}\\ &=P\left(\left\{-\pi<\theta \leq \omega t-\arccos \frac{y}{A}\right\} \cup\left\{\arccos \frac{y}{A}-\omega t<\theta \leq \pi\right\}\right) \\ &=\frac{1}{2 \pi}\left[\int_{-\pi}^{\omega t-\arccos \frac{y}{A}} d x+\int_{\arccos \frac{y}{A} \omega t}^{\pi} d x\right] \\ &=\frac{1}{2 \pi}\left[\omega t-\arccos \frac{y}{A}+\pi+\pi-\arccos \frac{y}{A}+\omega t\right] \\ &=\frac{1}{\pi}\left[\omega t+\pi-\arccos \frac{y}{A}\right] \end{aligned} FX(t)(y)=P{X(y)y}=P{Acos(ωt+θ)y}=P({π<θωtarccosAy}{arccosAyωt<θπ})=2π1[πωtarccosAydx+arccosAyωtπdx]=2π1[ωtarccosAy+π+πarccosAy+ωt]=π1[ωt+πarccosAy]
因此,当 − A ≤ y < + A -A \leq y<+A Ay<+A 时, X ( t ) X(t) X(t) 的概率密度为
f X ( t ) ( y ) = F X ( t ) ′ ( y ) = 1 π A 2 − y 2 f_{X(t)}(y)=F_{X(t)}^{\prime}(y)=\frac{1}{\pi \sqrt{A^{2}-y^{2}}} fX(t)(y)=FX(t)(y)=πA2y2 1
最终得到 X ( t ) X(t) X(t) 的概率密度为
f X ( t ) ( y ) = { 1 π A 2 − y 2 , − A ≤ y ≤ + A 0 ,  其  它  f_{X(t)}(y)=\left\{\begin{array}{cc} \frac{1}{\pi \sqrt{A^{2}-y^{2}}}, & -A \leq y \leq+A \\ 0, & \text { 其 } \text { 它 } \end{array}\right. fX(t)(y)={πA2y2 1,0,Ay+A    
例 b 设一由正弦振荡器输出的随机过程
X ( t ) = A cos ⁡ ( Ω t + θ ) , t ∈ ( − ∞ , + ∞ ) X(t)=A \cos (\Omega t+\theta), \quad t \in(-\infty,+\infty) X(t)=Acos(Ωt+θ),t(,+)
其中 A 、 Ω A 、 \Omega AΩ θ \theta θ 是相互独立的随机变量,并且已知它们的分布密度函数分别为 Ω ∼ U ( 250 , 350 ) \Omega \sim U(250,350) ΩU(250,350) 、 $\theta \sim U(0,2 \pi) \$ 及
$$
\begin{array}{r}

f_{A}(a)=\left{\begin{array}{ll}
\frac{2 a}{A_{0}^{2}}, & a \in\left(0, A_{0}\right) \
0, & a \notin\left(0, A_{0}\right)
\end{array}\right.
\end{array}
KaTeX parse error: Can't use function '$' in math mode at position 9: 试求随机过程 $̲X(t)$ 的一维概率密度。 …
f_{Y(t)}(y)=\left{\begin{array}{cc}
\frac{1}{\pi \sqrt{a{2}-y{2}}} & -a \leq y \leq+a \
0, & \text { 其 } \quad \text { 它 }
\end{array}\right.
KaTeX parse error: Can't use function '$' in math mode at position 5: 比较 $̲X(t)$ 与 $Y(t)$,…
Y(t)=X(t \mid A=a, \Omega=\omega)
由 连 续 型 全 概 率 公 式 , 我 们 有 由连续型全概率公式,我们有
P{X(t) \leq x}=\iint P{X(t) \leq x \mid A, \Omega} d F(a, \omega)
KaTeX parse error: Can't use function '$' in math mode at position 5: 由于 $̲A, \Omega$ 相互独立…
d F(a, \omega)=f(a, \omega) d a d \omega=f_{A}(a) f_{\Omega}(\omega) d a d \omega
KaTeX parse error: Can't use function '$' in math mode at position 5: 故有 $̲X(t)$ 的一维概率密度为
\begin{aligned}
f_{X(t)}(x) &=\iint \frac{1}{\pi \sqrt{a{2}-x{2}}} f_{A}(a) f_{\Omega}(\omega) d a d \omega\
&=\int_{x}^{A_{0}} d a \int_{250}^{350} \frac{1}{\pi \sqrt{a{2}-x{2}}} \cdot \frac{2 a}{A_{0}^{2}} \cdot \frac{1}{100} d \omega \
&= \begin{cases}\frac{2}{\pi A_{0}^{2}} \sqrt{A_{0}{2}-x{2}}, & |x| \leq A_{0} \
0, & |x|>A_{0}\end{cases}
\end{aligned}
KaTeX parse error: Can't use function '$' in math mode at position 6: **例 $̲\mathbf{c}$ (一…
X_{n}=\sum_{i=1}^{n} \xi_{i} \quad X_{0}=0
KaTeX parse error: Can't use function '$' in math mode at position 7: 由题意, $̲\xi_{i}$ 与质点所处位…
n, n-2, n-4, \cdots,-(n-4),-(n-2),-n
KaTeX parse error: Can't use function '$' in math mode at position 6: 如果在 $̲n$ 次游动中有 $m$ 次质…
X_{n}=\sum_{i=1}^{n} \xi_{i}=m \times(+1)+(n-m) \times(-1)=2 m-n=k
KaTeX parse error: Can't use function '$' in math mode at position 7: 由此得到 $̲m=\frac{n+k}{2}…
P\left{X_{n}=k\right}=C_{n}^{m} p^{m} q{n-m}=C_{n}{\frac{n+k}{2}} p^{\frac{n+k}{2}} q^{\frac{n-k}{2}}=\frac{n !}{\left(\frac{n+k}{2}\right) !\left(\frac{n-k}{2}\right) !} p^{\frac{n+k}{2}} q^{\frac{n-k}{2}}
$$
此式中 m m m 是一正整数,则如果 n n n 为奇数时, k k k 也是奇数 ( k < n ) (k<n) (k<n) ;如果 n n n 为 偶数时, k k k 也是偶数 ( k < n ) (k<n) (k<n)

例 d 设有一脉冲数字通信系统,它传送的信号是脉宽为 T 0 T_{0} T0 的脉冲信号,每 隔 T 0 T_{0} T0 送出一个脉冲。脉冲幅度 X ( t ) X(t) X(t) 是一随机变量,它可取四个值 { + 2 , + 1 , − 1 , − 2 } \{+2,+1,-1,-2\} {+2,+1,1,2} ,且取这四个值的概率是相等的,即
P { X ( t ) = + 2 } = P { X ( t ) = + 1 } = P { X ( t ) = − 1 } = P { X ( t ) = − 2 } = 1 / 4 P\{X(t)=+2\}=P\{X(t)=+1\}=P\{X(t)=-1\}=P\{X(t)=-2\}=1 / 4 P{X(t)=+2}=P{X(t)=+1}=P{X(t)=1}=P{X(t)=2}=1/4
不同周期内脉冲的幅度是相互统计独立的,脉冲的起始时间相对于原点的时间差 u u u 为均匀分布在 ( 0 , T 0 ) \left(0, T_{0}\right) (0,T0) 内的随机变量。试求在两个时刻 t 1 , t 2 t_{1}, t_{2} t1,t2 时,随机过程 X ( t ) X(t) X(t) 所取值 ( X ( t 1 ) , X ( t 2 ) ) \left(X\left(t_{1}\right), X\left(t_{2}\right)\right) (X(t1),X(t2)) 的二维联合概率密度。
典型样本函数如下图

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bM4fT0MH-1656548980001)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20220628161228692.png)]

在时间轴上任意固定两个时刻 t 1 ,   t 2 t_1 ,\ t_2 t1, t2,我们令

事件$C : : t_1 ,\ t_2 间 有 不 同 周 期 的 脉 冲 存 在 , 即 间有不同周期的脉冲存在,即 t_1 ,\ t_2$处在不同的脉冲周期内;

事件$C^c : : t_1 ,\ t_2 间 没 有 不 同 周 期 的 脉 冲 存 在 , 即 间没有不同周期的脉冲存在,即 t_1 ,\ t_2$处在相同的脉冲周期内;

(1) 当 ∣ t 1 − t 2 ∣ > T 0 \left|t_1-t_2\right|>T_0 t1t2>T0 时,有 P { C } = 1 P\{C\} =1 P{C}=1 P { C c } = 0 P\{C_c\}=0 P{Cc}=0

(2) 当 ∣ t 1 − t 2 ∣ ≤ T 0 \left|t_1-t_2\right|\leq T_0 t1t2T0 时, t 1 ,   t 2 t_1 ,\ t_2 t1, t2可能处在同一脉冲内,也可能不处在同一脉冲内。假设 θ \theta θ t 1 t_1 t1 所在的脉冲的起始时刻,由于脉冲的起始时刻相对于原点 $t = 0 $ 的时间差 u u u ( 0 , T 0 ) (0,T_0 ) (0,T0) 内的均匀分布,而且该信号是等宽的脉冲信号,因此 θ θ θ 可以看作均匀分布于 ( t 1 − T 0 , t 1 ) (t_1 − T_0 ,t_1 ) (t1T0,t1) 的随机变量。

如果 $ t_1 < t_2$ ,则

P { C c } = P { t 2 < θ + T 0 } = P { θ > t 2 − T 0 } = 1 − P { θ < t 2 − T } = 1 − 1 T 0 ∫ t 1 − T 0 t 2 − T 0 d θ = 1 − t 2 − t 1 T 0 \begin{aligned} P\left\{C^{c}\right\} &=P\left\{t_{2}<\theta+T_{0}\right\}=P\left\{\theta>t_{2}-T_{0}\right\}=1-P\left\{\theta<t_{2}-T\right\} \\ &=1-\frac{1}{T_{0}} \int_{t_{1}-T_{0}}^{t_{2}-T_{0}} d \theta=1-\frac{t_{2}-t_{1}}{T_{0}} \end{aligned} P{Cc}=P{t2<θ+T0}=P{θ>t2T0}=1P{θ<t2T}=1T01t1T0t2T0dθ=1T0t2t1

如果 t 1 > t 2 t_{1}>t_{2} t1>t2, 则 P { C c } = P { t 2 > θ } = 1 T 0 ∫ t 1 − T 0 t 2 d θ = 1 − t 1 − t 2 T 0 P\left\{C^{c}\right\}=P\left\{t_{2}>\theta\right\}=\frac{1}{T_{0}} \int_{t_{1}-T_{0}}^{t_{2}} d \theta=1-\frac{t_{1}-t_{2}}{T_{0}} P{Cc}=P{t2>θ}=T01t1T0t2dθ=1T0t1t2

因此有 P { C c } = 1 − ∣ t 1 − t 2 ∣ T 0 P { C } = ∣ t 1 − t 2 ∣ T 0 \quad P\left\{C^{c}\right\}=1-\frac{\left|t_{1}-t_{2}\right|}{T_{0}} \quad P\{C\}=\frac{\left|t_{1}-t_{2}\right|}{T_{0}} P{Cc}=1T0t1t2P{C}=T0t1t2

由全概率公式

f X t 1 X t 2 ( x 1 , x 2 ) = f X t 1 X t 2 ∣ C ( x 1 , x 2 ∣ C ) P { C } + f X t 1 X t 2 ∣ C c ( x 1 , x 2 ∣ C c ) P { C c } f_{X_{t_{1}} X_{t_2}}\left(x_{1}, x_{2}\right)=f_{X_{t_{1}} X_{t_2} \mid C}\left(x_{1}, x_{2} \mid C\right) P\{C\}+f_{X_{t_{1}} X_{t_{2} } \mid C^{c}}\left(x_{1}, x_{2} \mid C^{c}\right) P\left\{C^{c}\right\} fXt1Xt2(x1,x2)=fXt1Xt2C(x1,x2C)P{C}+fXt1Xt2Cc(x1,x2Cc)P{Cc}

根据不同周期内脉冲幅度是相互独立的随机变量, 我们有

f X t 1 X t 2 ∣ ∣ C ( x 1 , x 2 ∣ C ) = [ ∑ i = − 2 , − 1 , 1 , 2 1 4 δ ( x 1 − i ) ] × [ ∑ k = − 2 , − 1 , 1 , 2 1 4 δ ( x 2 − k ) ] f_{X_{t_{1}} X_{t_{2} \mid} \mid C}\left(x_{1}, x_{2} \mid C\right)=\left[\sum_{i=-2,-1,1,2} \frac{1}{4} \delta\left(x_{1}-i\right)\right] \times\left[\sum_{k=-2,-1,1,2} \frac{1}{4} \delta\left(x_{2}-k\right)\right] fXt1Xt2C(x1,x2C)=[i=2,1,1,241δ(x1i)]×k=2,1,1,241δ(x2k)

如果 t 1 , t 2 t_{1}, t_{2} t1,t2 处在同一周期内, 则 X t 1 = X t 2 X_{t_{1}}=X_{t_{2}} Xt1=Xt2, 此时有

f X t 1 X t 2 ∣ C c ( x 1 , x 2 ∣ C c ) = [ ∑ i = − 2 , − 1 , 1 , 2 1 4 δ ( x 1 − i ) δ ( x 2 − i ) ] f_{X_{t_{1}} X_{t_2} \mid C^{c}}\left(x_{1}, x_{2} \mid C^{c}\right)=\left[\sum_{i=-2,-1,1,2} \frac{1}{4} \delta\left(x_{1}-i\right) \delta\left(x_{2}-i\right)\right] fXt1Xt2Cc(x1,x2Cc)=[i=2,1,1,241δ(x1i)δ(x2i)]

由此最终得到 ( X ( t 1 ) , X ( t 2 ) ) \left(X\left(t_{1}\right), X\left(t_{2}\right)\right) (X(t1),X(t2)) 的二维联合概率密度如下

∣ t 1 − t 2 ∣ ≤ T 0 \left|t_{1}-t_{2}\right| \leq T_{0} t1t2T0

$$
\begin{aligned}
f_{X_{t_1} X_{t_{2}}}\left(x_{1}, x_{2}\right) &=\left[\sum_{i=-2,-1,1,2} \frac{1}{4} \delta\left(x_{1}-i\right)\right] \times\left[\sum_{k=-2,-1,1,2} \frac{1}{4} \delta\left(x_{2}-k\right)\right] \frac{\left|t_{1}-t_{2}\right|}{T_{0}} \
&+\left[\sum_{i=-2,-1,1,2} \frac{1}{4} \delta\left(x_{1}-i\right) \delta\left(x_{2}-i\right)\right]\left(1-\frac{\left|t_{1}-t_{2}\right|}{T_{0}}\right) \

\end{aligned}
$$

∣ t 1 − t 2 ∣ > T 0 \mid t_1-t_{2} \mid>T_{0} t1t2>T0
f X t 1 X t 2 ( x 1 , x 2 ) = [ ∑ i = − 2 , − 1 , 1 , 2 1 4 δ ( x 1 − i ) ] × [ ∑ k = − 2 , − 1 , 1 , 2 1 4 δ ( x 2 − k ) ] f_{X_{t_{1}} X_{t_{2}}}\left(x_{1}, x_{2}\right)=\left[\sum_{i=-2,-1,1,2} \frac{1}{4} \delta\left(x_{1}-i\right)\right] \times\left[\sum_{k=-2,-1,1,2} \frac{1}{4} \delta\left(x_{2}-k\right)\right] fXt1Xt2(x1,x2)=[i=2,1,1,241δ(x1i)]×k=2,1,1,241δ(x2k)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3go8QVNz-1656548980003)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20220628162430148.png)]

例 e 设有某通信系统,它传送的信号是脉宽为 T 0 T_{0} T0 的脉冲信号,脉冲信号的 周期为 T 0 T_{0} T0 。如果脉冲幅度 X ( t ) X(t) X(t) 是随机的,幅度服从正态分布 N ( 0 , σ 2 ) N\left(0, \sigma^{2}\right) N(0,σ2),不同周 期内的的幅度是相互统计独立的。脉冲沿的位置也是随机的,脉冲的起始时间相对于原点的时间差 u u u 为均匀分布在 ( 0 , T 0 ) \left(0, T_{0}\right) (0,T0) 内的随机变量。 u u u 和脉冲幅度间也是相互统计独立的 (脉议幅度调制信号),试求在两个时刻 t 1 , t 2 t_{1}, t_{2} t1,t2 时,该随机过程 X ( t ) X(t) X(t) 所取值 ( X ( t 1 ) , X ( t 2 ) ) \left(X\left(t_{1}\right), X\left(t_{2}\right)\right) (X(t1),X(t2)) 的二维联合概率密度。

在时间轴上任意固定两个时刻 t 1 , t 2 t_{1}, t_{2} t1,t2, 讨论同例 d d d

特别注意此时的状态空间

(a) 当 ∣ t 1 − t 2 ∣ > T 0 \left|t_{1}-t_{2}\right|>T_{0} t1t2>T0 时, t 1 , t 2 t_{1}, t_{2} t1,t2 位于不同的周期内,此时我们有

f X t 1 X t 2 ( x 1 , x 2 ) = 1 2 π σ 2 exp ⁡ { − x 1 2 + x 2 2 2 σ 2 } f_{X_{t_1} X_{t_{2}}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{x_{1}^{2}+x_{2}^{2}}{2 \sigma^{2}}\right\} fXt1Xt2(x1,x2)=2πσ21exp{2σ2x12+x22}

(b) 当 ∣ t 1 − t 2 ∣ ≤ T 0 \left|t_{1}-t_{2}\right| \leq T_{0} t1t2T0 时, t 1 , t 2 t_{1}, t_{2} t1,t2 位于两个不同的周期内的概率为

P { C } = ∣ t 1 − t 2 ∣ T 0 P\{C\}=\frac{\left|t_{1}-t_{2}\right|}{T_{0}} P{C}=T0t1t2

t 1 , t 2 t_{1}, t_{2} t1,t2 位于相同的周期内的概率为

P { C c } = 1 − ∣ t 1 − t 2 ∣ T 0 P\left\{C^{c}\right\}=1-\frac{\left|t_{1}-t_{2}\right|}{T_{0}} P{Cc}=1T0t1t2

根据全概率公式,我们有

f X t 1 X t 2 ( x 1 , x 2 ) = 1 2 π σ 2 exp ⁡ { − x 1 2 + x 2 2 2 σ 2 } ⋅ ∣ t 1 − t 2 ∣ T 0 + 1 2 π σ exp ⁡ { − x 1 2 2 σ 2 } δ ( x 1 − x 2 ) ⋅ [ 1 − ∣ t 1 − t 2 ∣ T 0 ] \begin{aligned} f_{X_{t_1} X_{t_{2}}}\left(x_{1}, x_{2}\right) &=\frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{x_{1}^{2}+x_{2}^{2}}{2 \sigma^{2}}\right\} \cdot \frac{\left|t_{1}-t_{2}\right|}{T_{0}} \\ &+\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{x_{1}^{2}}{2 \sigma^{2}}\right\} \delta\left(x_{1}-x_{2}\right) \cdot\left[1-\frac{\left|t_{1}-t_{2}\right|}{T_{0}}\right] \end{aligned} fXt1Xt2(x1,x2)=2πσ21exp{2σ2x12+x22}T0t1t2+2π σ1exp{2σ2x12}δ(x1x2)[1T0t1t2]

因为当 t 1 , t 2 t_{1}, t_{2} t1,t2 处在同一脉冲周期时, X ( t 1 ) , X ( t 2 ) X\left(t_{1}\right), X\left(t_{2}\right) X(t1),X(t2) 取相同的值, 所以上式的第二项出现了 δ ( x 1 − x 2 ) \delta\left(x_{1}-x_{2}\right) δ(x1x2) 函数。

此例中看出, X ( t 1 ) , X ( t 2 ) X\left(t_{1}\right), X\left(t_{2}\right) X(t1),X(t2) 的二维联合概率密度不再是二维正态分布,虽然 X ( t 1 ) X\left(t_{1}\right) X(t1) X ( t 2 ) X\left(t_{2}\right) X(t2) 都是正态分布。

f \mathrm{f} f 考察一随机过程,它在 t 0 + n T 0 t_{0}+n T_{0} t0+nT0 时刻具有宽度为 b b b 的矩形脉冲波,脉冲 幅度 A A A 为一等概率取值 ± a \pm a ±a 的随机变量,且 b < T 0 , t 0 b<T_{0}, t_{0} b<T0,t0 是在 ( 0 , T 0 ) \left(0, T_{0}\right) (0,T0) 上服从均匀分布的随机变量,并且脉冲幅度 A A A t 0 t_{0} t0 独立, 试求该过程的相关函数和方差。

由给定的随机过程,我们有
E { X ( t ) } = a × p + ( − a ) × p + 0 × ( 1 − 2 p ) = 0 E\{X(t)\}=a \times p+(-a) \times p+0 \times(1-2 p)=0 E{X(t)}=a×p+(a)×p+0×(12p)=0

下面求相关函数

任意取 t 1 , t 2 t_{1}, t_{2} t1,t2,且 t 1 < t 2 t_{1}<t_{2} t1<t2当, ∣ t 1 − t 2 ∣ > T 0 \left|t_{1}-t_{2}\right|>T_{0} t1t2>T0 时, t 1 , t 2 t_{1}, t_{2} t1,t2 位于不同的周期内,此时有

E { X ( t 1 ) X ( t 2 ) } = E { X ( t 1 ) } E { X ( t 2 ) } = 0 E\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}=E\left\{X\left(t_{1}\right)\right\} E\left\{X\left(t_{2}\right)\right\}=0 E{X(t1)X(t2)}=E{X(t1)}E{X(t2)}=0

∣ t 1 − t 2 ∣ ≤ T 0 \left|t_{1}-t_{2}\right| \leq T_{0} t1t2T0,且 t 1 , t 2 t_{1}, t_{2} t1,t2 位于两个不同的周期内时,我们有

E { X ( t 1 ) X ( t 2 ) } = E { X ( t 1 ) } E { X ( t 2 ) } = 0 E\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}=E\left\{X\left(t_{1}\right)\right\} E\left\{X\left(t_{2}\right)\right\}=0 E{X(t1)X(t2)}=E{X(t1)}E{X(t2)}=0

∣ t 1 − t 2 ∣ ≤ T 0 \left|t_{1}-t_{2}\right| \leq T_{0} t1t2T0,且 t 1 t_{1} t1, t 2 t_{2} t2 位于同一的周期内时,假设 θ \theta θ t 1 t_{1} t1 所在的脉冲的起始时刻,只有当 t 2 < θ + b t_{2}<\theta+b t2<θ+b 时, X ( t 1 ) X\left(t_{1}\right) X(t1) X ( t 2 ) X\left(t_{2}\right) X(t2) 取到不为零的值,此时的概率为

P { t 2 < θ + b } = 1 − P { θ < t 2 − b } = 1 − 1 T 0 ∫ t 1 − T 0 t 2 − b d θ = b − ( t 2 − t 1 ) T 0 P\left\{t_{2}<\theta+b\right\}=1-P\left\{\theta<t_{2}-b\right\}=1-\frac{1}{T_{0}} \int_{t_{1}-T_{0}}^{t_{2}-b} d \theta=\frac{b-\left(t_{2}-t_{1}\right)}{T_{0}} P{t2<θ+b}=1P{θ<t2b}=1T01t1T0t2bdθ=T0b(t2t1)

由此,我们有

E { X ( t 1 ) X ( t 2 ) } = a 2 ⋅ b − ( t 2 − t 1 ) T 0 E\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}=a^{2} \cdot \frac{b-\left(t_{2}-t_{1}\right)}{T_{0}} E{X(t1)X(t2)}=a2T0b(t2t1)

同理,当 t 1 > t 2 t_{1}>t_{2} t1>t2 是,我们有

E { X ( t 1 ) X ( t 2 ) } = a 2 ⋅ b − ( t 1 − t 2 ) T 0 E\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}=a^{2} \cdot \frac{b-\left(t_{1}-t_{2}\right)}{T_{0}} E{X(t1)X(t2)}=a2T0b(t1t2)

因此,最终得到

R X ( τ ) = a 2 ( b − ∣ τ ∣ ) T 0 , τ = t 2 − t 1 , D X ( t ) = R X ( 0 ) = a 2 b T 0 R_{X}(\tau)=\frac{a^{2}(b-|\tau|)}{T_{0}}, \quad \tau=t_{2}-t_{1}, \quad D_{X}(t)=R_{X}(0)=\frac{a^{2} b}{T_{0}} RX(τ)=T0a2(bτ),τ=t2t1,DX(t)=RX(0)=T0a2b

例 g 随机电报信号定义如下

(1) 在任何时刻 t , X ( t ) t, X(t) t,X(t) 取值为 0 \mathbf{0} 0 1 \mathbf{1} 1只有,两种可能状态。并设

P { X ( t ) = 0 } = 1 / 2 , P { X ( t ) = 1 } = 1 / 2 P\{X(t)=0\}=1 / 2, P\{X(t)=1\}=1 / 2 P{X(t)=0}=1/2,P{X(t)=1}=1/2

(2) 每个状态的持续时间是随机的,设在 T T T 时间内波形变化的次数 μ \mu μ 服从Poission 分布即

P { μ = k } = ( λ T ) k k ! e − λ T ( λ > 0 , T > 0 ) P\{\mu=k\}=\frac{(\lambda T)^{k}}{k !} e^{-\lambda T} \quad(\lambda>0, T>0) P{μ=k}=k!(λT)keλT(λ>0,T>0)

(3) X ( t ) X(t) X(t) 取何值 (即所处的状态) 与随机变量 μ \mu μ 是相互统计独立的。

求随机电报信号 X ( t ) X(t) X(t) 的均值函数和自相关函数。

由均值函数和自相关函数的定义,有

(1) 均值函数 E { X ( t ) } = 1 × 1 2 + 0 × 1 2 = 1 2 E\{X(t)\}=1 \times \frac{1}{2}+0 \times \frac{1}{2}=\frac{1}{2} E{X(t)}=1×21+0×21=21,即均值函数是常数。

(2) 相关函数 在时间轴上任意固定两个时刻 t 1 , t 2 t_{1}, t_{2} t1,t2,如果 t 2 > t 1 t_{2}>t_{1} t2>t1,则

R X X ( t 1 , t 2 ) = E { X ( t 1 ) X ( t 2 ) } = 1 × 1 P { X ( t 1 ) = 1 , X ( t 2 ) = 1 } + + 0 × 1 P { X ( t 1 ) = 0 , X ( t 2 ) = 1 } + 1 × 0 P { X ( t 1 ) = 1 , X ( t 2 ) = 0 } + 0 × 0 P { X ( t 1 ) = 0 , X ( t 2 ) = 0 } \begin{aligned} R_{X X}\left(t_{1}, t_{2}\right) &=E\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}=1 \times 1 P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=1\right\}+\\ &+0 \times 1 P\left\{X\left(t_{1}\right)=0, X\left(t_{2}\right)=1\right\}+1 \times 0 P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=0\right\} \\ &+0 \times 0 P\left\{X\left(t_{1}\right)=0, X\left(t_{2}\right)=0\right\} \end{aligned} RXX(t1,t2)=E{X(t1)X(t2)}=1×1P{X(t1)=1,X(t2)=1}++0×1P{X(t1)=0,X(t2)=1}+1×0P{X(t1)=1,X(t2)=0}+0×0P{X(t1)=0,X(t2)=0}

下面求 P { X ( t 1 ) = 1 , X ( t 2 ) = 1 } P\left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=1\right\} P{X(t1)=1,X(t2)=1} 。由于事件 { X ( t 1 ) = 1 , X ( t 2 ) = 1 } \left\{X\left(t_{1}\right)=1, X\left(t_{2}\right)=1\right\} {X(t1)=1,X(t2)=1} 等价于事件 { X ( t 1 ) = 1 \left\{X\left(t_{1}\right)=1\right. {X(t1)=1, 在 t 2 − t 1 t_{2}-t_{1} t2t1 时间内波形发生偶数次变化 } \} }, 即等价于事件

{ X ( t 1 ) = 1 , μ = \left\{X\left(t_{1}\right)=1, \mu=\right. {X(t1)=1,μ= 偶数 } \} }, 故

R X X ( t 1 , t 2 ) = P { X ( t 1 ) = 1 , μ =  偶数  } = P { X ( t 1 ) = 1 } P { μ =  偶数  } = 1 2 P { μ =  偶数  } = 1 2 ∑ k = 1 i i [ λ ( t 2 − t 1 ) ] k k ! e − λ ( t 2 − t 1 ) = 1 2 × 1 2 [ ∑ k = 0 ∞ [ λ ( t 2 − t 1 ) ] k k ! e − λ ( t 2 − t 1 ) + ∑ k = 0 ∞ [ − λ ( t 2 − t 1 ) ] k k ! e − λ ( t 2 − t 1 ) ] = 1 4 e − λ ( t 2 − t 1 ) [ e λ ( t 2 − t 1 ) + e − λ ( t 2 − t 1 ) ] = 1 4 [ 1 + e − 2 λ ( t 2 − t 1 ) ] \begin{aligned} R_{X X} \left(t_{1}, t_{2}\right)&=P\left\{X\left(t_{1}\right)=1, \mu=\text { 偶数 }\right\} \\ &=P\left\{X\left(t_{1}\right)=1\right\} P\{\mu=\text { 偶数 }\} \\ &=\frac{1}{2} P\{\mu=\text { 偶数 }\}\\ &=\frac{1}{2} \sum_{k=1 i_{i}} \frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}}{k !} e^{-\lambda\left(t_{2}-t_{1}\right)} \\ &=\frac{1}{2} \times \frac{1}{2}\left[\sum_{k=0}^{\infty} \frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}}{k !} e^{-\lambda\left(t_{2}-t_{1}\right)}+\sum_{k=0}^{\infty} \frac{\left[-\lambda\left(t_{2}-t_{1}\right)\right]^{k}}{k !} e^{-\lambda\left(t_{2}-t_{1}\right)}\right] \\ &=\frac{1}{4} e^{-\lambda\left(t_{2}-t_{1}\right)}\left[e^{\lambda\left(t_{2}-t_{1}\right)}+e^{-\lambda\left(t_{2}-t_{1}\right)}\right]\\ &=\frac{1}{4}\left[1+e^{-2 \lambda\left(t_{2}-t_{1}\right)}\right] \end{aligned} RXX(t1,t2)=P{X(t1)=1,μ= 偶数 }=P{X(t1)=1}P{μ= 偶数 }=21P{μ= 偶数 }=21k=1iik![λ(t2t1)]keλ(t2t1)=21×21[k=0k![λ(t2t1)]keλ(t2t1)+k=0k![λ(t2t1)]keλ(t2t1)]=41eλ(t2t1)[eλ(t2t1)+eλ(t2t1)]=41[1+e2λ(t2t1)]

同理,如果 t 2 < t 1 t_{2}<t_{1} t2<t1, 则有

R X X ( t 1 , t 2 ) = 1 4 [ 1 + e 2 λ ( t 2 − t 1 ) ] R_{X X}\left(t_{1}, t_{2}\right)=\frac{1}{4}\left[1+e^{2 \lambda\left(t_{2}-t_{1}\right)}\right] RXX(t1,t2)=41[1+e2λ(t2t1)]

故有

R X X ( t 1 , t 2 ) = 1 4 [ 1 + e − 2 λ ∣ t 1 − t 2 ∣ ] R_{X X}\left(t_{1}, t_{2}\right)=\frac{1}{4}\left[1+e^{-2 \lambda|t_{1}-t_{2} \mid}\right] RXX(t1,t2)=41[1+e2λt1t2]

因此有

C X X ( t 1 , t 2 ) = R X X ( t 1 , t 2 ) − μ X ( t 1 ) μ X ( t 2 ) = Cov ⁡ ( X ( t 1 ) , X ( t 2 ) ) = 1 4 e − 2 λ ∣ t 1 − t 2 ∣ \begin{aligned} C_{X X}\left(t_{1}, t_{2}\right) &=R_{X X}\left(t_{1}, t_{2}\right)-\mu_{X}\left(t_{1}\right) \mu_{X}\left(t_{2}\right)\\ &=\operatorname{Cov}\left(X\left(t_{1}\right), X\left(t_{2}\right)\right) \\ &=\frac{1}{4} e^{-2 \lambda|t_{1}-t_{2} \mid} \end{aligned} CXX(t1,t2)=RXX(t1,t2)μX(t1)μX(t2)=Cov(X(t1),X(t2))=41e2λt1t2

设时间差 τ = t 1 − t 2 \tau=t_{1}-t_{2} τ=t1t2, 则有

R X X ( t 1 , t 2 ) = 1 4 [ 1 + e − 2 λ ∣ τ ∣ ] C X X ( t 1 , t 2 ) = Cov ⁡ ( X ( t 1 ) , X ( t 2 ) ) = 1 4 e − 2 λ ∣ τ ∣ \begin{gathered} R_{X X}\left(t_{1}, t_{2}\right)=\frac{1}{4}\left[1+e^{-2 \lambda|\tau|}\right] \\ C_{X X}\left(t_{1}, t_{2}\right)=\operatorname{Cov}\left(X\left(t_{1}\right), X\left(t_{2}\right)\right)=\frac{1}{4} e^{-2 \lambda|\tau|} \end{gathered} RXX(t1,t2)=41[1+e2λτ]CXX(t1,t2)=Cov(X(t1),X(t2))=41e2λτ

因为随机电报信号 X ( t ) X(t) X(t) 的均值函数为常数, 相关函数仅为时间差的函数, 故随机电报信号是宽平稳过程。

复随机过程

定义 X , Y X, Y X,Y 为同一概率空间 ( Ω , Σ , P ) (\Omega, \Sigma, P) (Ω,Σ,P) 上的两个取实数值的随机变量, 并设 Z = X + j Y Z=X+j Y Z=X+jY, 则称 Z Z Z 为该概率空间上的一个复随机变量。

我们有

E { Z } = E { X } + j E { Y } D { Z } = E { ∣ Z − E { Z } ∣ 2 } = E { [ Z − E { Z } ] [ Z − E { Z } ] ‾ } = E { ( X − E X ) 2 } + E { ( Y − E Y ) 2 } \begin{aligned} E\{Z\} &=E\{X\}+j E\{Y\} \\ D\{Z\} &=E\left\{|Z-E\{Z\}|^{2}\right\}=E\{[Z-E\{Z\}] \overline{[Z-E\{Z\}]}\} \\ &=E\left\{(X-E X)^{2}\right\}+E\left\{(Y-E Y)^{2}\right\} \end{aligned} E{Z}D{Z}=E{X}+jE{Y}=E{ZE{Z}2}=E{[ZE{Z}][ZE{Z}]}=E{(XEX)2}+E{(YEY)2}

定义 { X ( t ) } \{X(t)\} {X(t)} { Y ( t ) } \{Y(t)\} {Y(t)} 是具有相同参数和概率空间的一对实随机过程,则 Z ( t ) = X ( t ) + j Y ( t ) Z(t)=X(t)+j Y(t) Z(t)=X(t)+jY(t) 称为复随机过程。

同样有

E { Z ( t ) } = E { X ( t ) } + j E { Y ( t ) } E\{Z(t)\}=E\{X(t)\}+j E\{Y(t)\} E{Z(t)}=E{X(t)}+jE{Y(t)},称为均值函数。

R ZZ  ( t 1 , t 2 ) = ^ E { Z ( t 1 ) Z ( t 2 ) ‾ } = E { [ X ( t 1 ) + j Y ( t 1 ) ] [ X ( t 2 ) + j Y ( t 2 ) ] ‾ } R_{\text {ZZ }}\left(t_{1}, t_{2}\right) \hat{=} E\left\{Z\left(t_{1}\right) \overline{Z\left(t_{2}\right)}\right\}=E\left\{\left[X\left(t_{1}\right)+j Y\left(t_{1}\right)\right]\left[\overline{\left.X\left(t_{2}\right)+j Y\left(t_{2}\right)\right]}\right\}\right. RZZ (t1,t2)=^E{Z(t1)Z(t2)}=E{[X(t1)+jY(t1)][X(t2)+jY(t2)]}, 称为复随机过程的相关函数。

例 8 设有复随机过程 ξ ( t ) = ∑ k = 1 N η k e j ω k t \xi(t)=\sum_{k=1}^{N} \eta_{k} e^{j \omega_{k} t} ξ(t)=k=1Nηkejωkt, 其中 η k ( 1 ≤ k ≤ N ) \eta_{k}(1 \leq k \leq N) ηk(1kN) 是相互独立的随机变量, 且服从正态分布 N ( 0 , σ k 2 ) , ω k N\left(0, \sigma_{k}^{2}\right), \omega_{k} N(0,σk2),ωk 为常数。试求 ξ ( t ) \xi(t) ξ(t) 的均值函数和相关函数。

由于
ξ ( t ) = ∑ k = 1 N η k e j ω k t = ∑ k = 1 N η k cos ⁡ ( ω k t ) + j ∑ k = 1 N η k sin ⁡ ( ω k t ) \xi(t)=\sum_{k=1}^{N} \eta_{k} e^{j \omega_{k} t}=\sum_{k=1}^{N} \eta_{k} \cos \left(\omega_{k} t\right)+j \sum_{k=1}^{N} \eta_{k} \sin \left(\omega_{k} t\right) ξ(t)=k=1Nηkejωkt=k=1Nηkcos(ωkt)+jk=1Nηksin(ωkt)

因此有

E { ξ ( t ) } = E { ∑ k = 1 N η k e j ω k t } = E { ∑ k = 1 N η k cos ⁡ ( ω k t ) + j ∑ k = 1 N η k sin ⁡ ( ω k t ) } = 0 R ξ ( t 1 , t 2 ) = E { ξ ( t 1 ) ξ ( t 2 ) ‾ } = E { ( ∑ k = 1 N η k e j ω k t 1 ) ( ∑ i = 1 N η i e j ω t 2 t 2 ) ‾ } = E { ∑ k = 1 N ∑ i = 1 N η k η i e j ω k t 1 − j ω t t 2 } = ∑ k = 1 N σ k 2 e j ω k ( t 1 − t 2 ) = ∑ k = 1 N σ k 2 e j ω k τ \begin{gathered} E\{\xi(t)\}=E\left\{\sum_{k=1}^{N} \eta_{k} e^{j \omega_{k} t}\right\}=E\left\{\sum_{k=1}^{N} \eta_{k} \cos \left(\omega_{k} t\right)+j \sum_{k=1}^{N} \eta_{k} \sin \left(\omega_{k} t\right)\right\}=0 \\ R_{\xi}\left(t_{1}, t_{2}\right)=E\left\{\xi\left(t_{1}\right) \overline{\xi\left(t_{2}\right)}\right\}=E\left\{\left(\sum_{k=1}^{N} \eta_{k} e^{j \omega_{k} t_{1}}\right) \overline{\left(\sum_{i=1}^{N} \eta_{i} e^{j \omega_{t_{2}} t_{2}}\right)}\right\} \\ =E\left\{\sum_{k=1}^{N} \sum_{i=1}^{N} \eta_{k} \eta_{i} e^{j \omega_{k} t_{1}-j \omega_{t} t_{2}}\right\}=\sum_{k=1}^{N} \sigma_{k}^{2} e^{j \omega_{k}\left(t_{1}-t_{2}\right)}=\sum_{k=1}^{N} \sigma_{k}^{2} e^{j \omega_{k} \tau} \end{gathered} E{ξ(t)}=E{k=1Nηkejωkt}=E{k=1Nηkcos(ωkt)+jk=1Nηksin(ωkt)}=0Rξ(t1,t2)=E{ξ(t1)ξ(t2)}=E(k=1Nηkejωkt1)(i=1Nηiejωt2t2)=E{k=1Ni=1Nηkηiejωkt1jωtt2}=k=1Nσk2ejωk(t1t2)=k=1Nσk2ejωkτ

其中 τ = t 1 − t 2 \tau=t_{1}-t_{2} τ=t1t2

注意 均值为零,相关函数是时间差的函数,是宽平稳过程。

习题

1、设随机向量 ( X , Y ) (X, Y) (X,Y) 的两个分量相互独立, 且均服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)
(a) 分别写出随机变量 X + Y X+Y X+Y X − Y X-Y XY 的分布密度
(b) 试问 : X + Y X+Y X+Y X − Y X-Y XY 是否独立? 说明理由

2、设 X X X Y Y Y 为独立的随机变量,期望和方差分别为 μ 1 , σ 1 2 \mu_{1}, \sigma_{1}^{2} μ1,σ12 μ 2 , σ 2 2 \mu_{2}, \sigma_{2}^{2} μ2,σ22

(a) 试求 Z = X Y Z=X Y Z=XY X X X 的相关系数 ;

(b) Z Z Z X X X 能否不相关?能否有严格线性函数关系? 若能, 试分别与写出条件。

3、设 { X ( t ) , t ≥ 0 } \{X(t), t \geq 0\} {X(t),t0} 是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 E { X ( s ) X ( t ) } = B ( t − s ) , s ≤ t E\{X(s) X(t)\}=B(t-s), s \leq t E{X(s)X(t)}=B(ts),st, 且是一个周期为 T T T 的函数,即 B ( τ + T ) = B ( τ ) , τ ≥ 0 B(\tau+T)=B(\tau), \tau \geq 0 B(τ+T)=B(τ),τ0,试求方差函数 D [ X ( t ) − X ( t + T ) ] D[X(t)-X(t+T)] D[X(t)X(t+T)]

4、考察两个谐波随机信号 X ( t ) X(t) X(t) Y ( t ) Y(t) Y(t), 其中
X ( t ) = A cos ⁡ ( ω c t + ϕ ) , Y ( t ) = B cos ⁡ ( ω c t ) X(t)=A \cos \left(\omega_{c} t+\phi\right), \quad Y(t)=B \cos \left(\omega_{c} t\right) X(t)=Acos(ωct+ϕ),Y(t)=Bcos(ωct)

式中 A A A ω c \omega_{c} ωc 为正的常数; ϕ \phi ϕ [ − π , π ] [-\pi, \pi] [π,π] 内均匀分布的随机变量, B B B 是标准正态分布的随机变量。

(a) 求 X ( t ) X(t) X(t) 的均值、方差和相关函数 ;

(b) 若 ϕ \phi ϕ B B B 独立, 求 X ( t ) X(t) X(t) Y ( t ) Y(t) Y(t) 的互相关函数。

5、设 ξ ( t ) = X sin ⁡ ( Y t ) ; t ≥ 0 \xi(t)=X \sin (Y t) ; t \geq 0 ξ(t)=Xsin(Yt);t0 ,而随机变量 X 、 Y X 、 Y XY 是相互独立且都服从 [ 0 , 1 ] [0,1] [0,1] 上的均匀分布, 试求此过程的均值函数及相关函数。

6、设随机向量 X = ( X 1 , X 2 ) τ = ( μ , Σ ) τ X=\left(X_{1}, X_{2}\right)^{\tau}=(\mu, \Sigma)^{\tau} X=(X1,X2)τ=(μ,Σ)τ 其中 : μ = ( μ 1 , μ 2 ) τ = ( 1 , 2 ) τ , Σ = ( 1 4 / 5 4 / 5 1 ) : \mu=\left(\mu_{1}, \mu_{2}\right)^{\tau}=(1,2)^{\tau}, \Sigma=\left(\begin{array}{cc}1 & 4 / 5 \\ 4 / 5 & 1\end{array}\right) :μ=(μ1,μ2)τ=(1,2)τ,Σ=(14/54/51), 令随机向量 Y = ( Y 1 , Y 2 ) τ = ( 3 2 2 3 ) X Y=\left(Y_{1}, Y_{2}\right)^{\tau}=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right) X Y=(Y1,Y2)τ=(3223)X

(a) 试求随机向量 Y Y Y 的协方差矩阵、 E { Y 2 ∣ Y 1 } E\left\{Y_{2} \mid Y_{1}\right\} E{Y2Y1} E { Y 1 + Y 2 } E\left\{Y_{1}+Y_{2}\right\} E{Y1+Y2};

(b) 试问 X 2 − E { X 2 ∣ X 1 } X_{2}-E\left\{X_{2} \mid X_{1}\right\} X2E{X2X1} X 1 X_{1} X1

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
随机过程导论概率论中的一个重要分支,它研究的是随机现象随时间演化的规律。在现实生活中,许多事件都具有随机,如股票市场的波动、天气的变化以及人们的出行方式等。随机过程导论的目的就是通过数学建模和分析,揭示这些随机现象的规律,以便我们能够更好地理解和应对。 随机过程导论主要研究的内容包括随机过程的定义、分类和质等。随机过程是一族随机变量的集合,它们的取值依赖于时间。根据取值的类型,随机过程可以分为离散时间随机过程和连续时间随机过程两种。离散时间随机过程中,时间是离散的,例如掷骰子的结果;而连续时间随机过程则是在连续时间区间内变化的,如股票价格的波动。 在随机过程导论中,我们还会学习到随机过程的描述方法和质。常见的描述方法有状态转移概率、随机演化方程等。此外,我们还会研究随机过程的平稳、马尔可夫等重要质。通过研究这些质,我们可以对随机过程的发展进行预测和控制。 随机过程导论也与其他学科有着紧密的联系,如统计学、信号处理和通信工程等。在这些学科中,我们也会涉及到随机过程的相关内容,如随机信号的分析和处理等。 综上所述,随机过程导论概率论中的一个重要研究领域,通过对随机现象的建模和分析,揭示了随机过程的规律。它不仅是概率论的基础之一,也在许多实际问题中具有广泛的应用价值。通过学习随机过程导论,我们可以更好地理解和处理与随机相关的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值