Scrapy 框架
-
Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。
-
框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。
-
Scrapy 使用了 Twisted
['twɪstɪd]
(其主要对手是Tornado)异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。
Scrapy架构图(绿线是数据流向):
-
Scrapy Engine(引擎)
: 负责Spider
、ItemPipeline
、Downloader
、Scheduler
中间的通讯,信号、数据传递等。 -
Scheduler(调度器)
: 它负责接受引擎
发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎
需要时,交还给引擎
。 -
Downloader(下载器)
:负责下载Scrapy Engine(引擎)
发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎)
,由引擎
交给Spider
来处理, -
Spider(爬虫)
:它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎
,再次进入Scheduler(调度器)
, -
Item Pipeline(管道)
:它负责处理Spider
中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方. -
Downloader Middlewares(下载中间件)
:你可以当作是一个可以自定义扩展下载功能的组件。 -
Spider Middlewares(Spider中间件)
:你可以理解为是一个可以自定扩展和操作引擎
和Spider
中间通信
的功能组件(比如进入Spider
的Responses;和从Spider
出去的Requests)
Scrapy的运作流程
代码写好,程序开始运行...
-
引擎
:Hi!Spider
, 你要处理哪一个网站? -
Spider
:老大要我处理xxxx.com。 -
引擎
:你把第一个需要处理的URL给我吧。 -
Spider
:给你,第一个URL是xxxxxxx.com。 -
引擎
:Hi!调度器
,我这有request请求你帮我排序入队一下。 -
调度器
:好的,正在处理你等一下。 -
引擎
:Hi!调度器
,把你处理好的request请求给我。 -
调度器
:给你,这是我处理好的request -
引擎
:Hi!下载器,你按照老大的下载中间件
的设置帮我下载一下这个request请求 -
下载器
:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎
告诉调度器
,这个request下载失败了,你记录一下,我们待会儿再下载) -
引擎
:Hi!Spider
,这是下载好的东西,并且已经按照老大的下载中间件
处理过了,你自己处理一下(注意!这儿responses默认是交给def parse()
这个函数处理的) -
Spider
:(处理完毕数据之后对于需要跟进的URL),Hi!引擎
,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。 -
引擎
:Hi !管道
我这儿有个item你帮我处理一下!调度器
!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。 -
管道``调度器
:好的,现在就做!
注意!只有当调度器
中不存在任何request了,整个程序才会停止,(也就是说,对于下载失败的URL,Scrapy也会重新下载。)
制作 Scrapy 爬虫 一共需要4步:
- 创建虚拟环境:下载scrapy框架,pip install scrapy
- 新建项目 (scrapy startproject xxx):新建一个新的爬虫项目
- 明确目标 (编写items.py):明确你想要抓取的目标
- 制作爬虫 (spiders/xxspider.py):制作爬虫开始爬取网页
- 存储内容 (pipelines.py):设计管道存储爬取内容
新建项目(scrapy startproject)
- 在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:
scrapy startproject mySpider
- 其中, mySpider 为项目名称,可以看到将会创建一个 mySpider 文件夹,目录结构大致如下:
下面来简单介绍一下各个主要文件的作用:
scrapy.cfg :项目的配置文件
mySpider/ :项目的Python模块,将会从这里引用代码
mySpider/items.py :项目的目标文件
mySpider/pipelines.py :项目的管道文件
mySpider/settings.py :项目的设置文件
mySpider/spiders/ :存储爬虫代码目录
二、明确目标(mySpider/items.py)
我们打算抓取:传智教育课程培训教研团队 网站里的所有讲师的姓名、职称和个人信息。
-
打开mySpider目录下的items.py
-
Item 定义结构化数据字段,用来保存爬取到的数据,有点像Python中的dict,但是提供了一些额外的保护减少错误。
-
可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field的类属性来定义一个Item(可以理解成类似于ORM的映射关系)。
-
接下来,创建一个ItcastItem 类,和构建item模型(model)。(items.py)
import scrapy
class ItcastItem(scrapy.Item):
name = scrapy.Field()
title = scrapy.Field()
info = scrapy.Field()
制作爬虫 (spiders/itcastSpider.py)
爬虫功能要分两步:
1. 爬数据
- 在当前目录下输入命令,将在
mySpider/spiders
目录下创建一个名为itcast
的爬虫,并指定爬取域的范围:
scrapy genspider itcast "itcast.cn"
- 打开 mySpider/spider目录里的 itcast.py,默认增加了下列代码:(itcast.py)
import scrapy
class ItcastSpider(scrapy.Spider):
name = "itcast"
allowed_domains = ["itcast.cn"]
start_urls = (
'http://www.itcast.cn/',
)
def parse(self, response):
pass
其实也可以由我们自行创建itcast.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦
要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。
-
name = ""
:这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。 -
allow_domains = []
是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。 -
start_urls = ()
:爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。 -
parse(self, response)
:解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:- 负责解析返回的网页数据(response.body),提取结构化数据(生成item)
- 生成需要下一页的URL请求。
将start_urls的值修改为需要爬取的第一个url
start_urls = ["http://www.itcast.cn/channel/teacher.shtml"]
将def parse(self,response):修改为
from mySpider.items import ItcastItem
def parse(self, response):
#open("teacher.html","wb").write(response.body).close()
# 存放老师信息的集合
#items = []
for each in response.xpath("//div[@class='li_txt']"):
# 将我们得到的数据封装到一个 `ItcastItem` 对象
item = ItcastItem()
#extract()方法返回的都是unicode字符串
name = each.xpath("h3/text()").extract()
title = each.xpath("h4/text()").extract()
info = each.xpath("p/text()").extract()
#xpath返回的是包含一个元素的列表
item['name'] = name[0]
item['title'] = title[0]
item['info'] = info[0]
#items.append(item)
#将获取的数据交给pipelines
yield item
# 返回数据,不经过pipeline
#return items
item写入JSON文件(pipline.py)
以下pipeline将所有(从所有'spider'中)爬取到的item,存储到一个独立地items.json 文件,每行包含一个序列化为'JSON'格式的'item':
import json
class ItcastJsonPipeline(object):
def __init__(self):
self.file = open('teacher.json', 'w',encoding='utf-8')
def process_item(self, item, spider):
content = json.dumps(dict(item), ensure_ascii=False) + "\n"
self.file.write(content)
return item
def close_spider(self, spider):
self.file.close()
启用一个Item Pipeline组件
为了启用Item Pipeline组件,必须将它的类添加到 settings.py文件ITEM_PIPELINES 配置,就像下面这个例子:
# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
#'mySpider.pipelines.SomePipeline': 300,
"mySpider.pipelines.ItcastJsonPipeline":300
}
分配给每个类的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内(0-1000随意设置,数值越低,组件的优先级越高)
保存数据
scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,,命令如下,记得路径退到项目目录下。
# json格式,默认为Unicode编码
scrapy crawl itcast -o teachers.json
# json lines格式,默认为Unicode编码
scrapy crawl itcast -o teachers.jsonl
# csv 逗号表达式,可用Excel打开
scrapy crawl itcast -o teachers.csv
# xml格式
scrapy crawl itcast -o teachers.xml