最优化--凸函数--拉格朗日乘子法

文章介绍了凸函数的概念,包括其定义、性质和判定方法,特别强调了凸函数在优化问题中的重要性,即局部最小值即为全局最小值。此外,还详细阐述了拉格朗日乘子法的基本思想和应用,这是一种解决带约束优化问题的有效工具,通过构造拉格朗日函数来转化原问题并利用KKT条件寻找解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

凸函数

凸函数定义

凸函数的判定

性质特点 

拉格朗日乘子法 

基本思想

有约束最优化问题

拉格朗日乘子法


凸函数

凸函数(Convex Function)是定义在凸集上的实值函数,具有以下性质:对于任意两个定义域内的点,函数上的连线段上的点的函数值不超过这两个点的函数值。

形式化地,设函数 f(x) 在凸集 C 上定义,对于 C 中的任意两个点 x1 和 x2,以及任意实数 t(0 <= t <= 1),满足以下不等式:

f(tx1 + (1-t)x2) <= tf(x1) + (1-t)f(x2)

其中,tx1 + (1-t)x2 是 x1 和 x2 的凸组合。

凸函数的几何直观解释是:函数上的每个点都位于连接该点的任意两个点所在的线段或曲线的上方。

凸函数定义

设函数f定义在凸集D上,若对于∀x,y∈D及 0≤θ≤1,都有f(θx+(1-θ)y)<θf(x)+(1-

θ)f(y),则称f为凸函数。

从图形上看,就是:凸函数在函数上任意找两点它们的连线(也就是割线)上的值比对

应的函数的值要大。

凸函数的判定

以一元函数为例,若函数f(x)有f''(x)>0,则函数f(x)就是凸函数。

例如:函数f(x)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我还可以熬_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值