最优化--梯度下降法--牛顿法(详解)

目录

梯度下降法

梯度下降法

 步骤

牛顿法

牛顿法的基本思想

牛顿法的优缺点

作用


梯度下降法

梯度下降法(Gradient Descent)是一种常用的优化算法,用于求解函数的最小值或最大值。它通过迭代的方式,不断更新参数的取值,使目标函数的值逐渐趋近于最优解。

梯度下降法的基本思想是,在每一次迭代中,通过计算目标函数对参数的梯度(即函数在当前参数取值处的变化率),然后沿着梯度的反方向进行参数更新,从而使目标函数的值逐步下降。这是因为梯度的方向指示了函数增长最快的方向,而我们希望找到函数的最小值,因此朝着梯度的反方向进行参数更新可以逐渐接近最优解。

 

在最小化损失函数时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函

数和模型参数值。

梯度下降法

在机器学习中,对于很多监督学习模型,需要对原始的模型构建损失函数,接下来便是通

过优化算法对损失函数进行优化,最小化损失函数,以便寻找到最优的参数.于是,基于搜

索的梯度下降法就产生了。

梯度下降法是通过当前点的梯度的反方向寻找到新的迭代点,并从当前点移动到新的迭

代点继续寻找新的迭代点,直到找到最优解。

以下图为例:

上图中,η 称为学习率(learning rate),有时候也写作α,其取值影响获得最优解的速度

 

通过这个公式,在梯度下降法中不断搜索最佳的θ值。

 步骤

  1. 初始化参数:选择初始参数的取值。

  2. 计算梯度:计算目标函数对参数的梯度。梯度表示了函数在当前参数取值处的变化率。

  3. 参数更新:根据梯度的反方向,按照一定的步长(学习率)更新参数的取值。更新公式为:新参数 = 旧参数 - 学习率 × 梯度。

  4. 重复迭代:重复步骤2和步骤3,直到满足停止条件,例如达到最大迭代次数或目标函数的变化很小。

牛顿法

牛顿法(Newton's Method),也称为牛顿-拉弗森法(Newton-Raphson Method),是一种用于求解方程根或函数的最小值的迭代优化算法。它利用函数的二阶导数信息(Hessian矩阵)来逼近函数的局部性质,能够更快地收敛到最优解。

牛顿法的基本思想是通过构造函数的泰勒级数展开来近似原函数,并使用近似函数的根或最小值来逐步逼近原函数的根或最小值。在每一次迭代中,牛顿法使用当前点的切线来估计函数的根或最小值,并将切线与x轴的交点作为下一次迭代的点。这样,通过不断迭代,可以逐渐逼近函数的根或最小值。

 

牛顿法的基本思想

在现有的极小值估计值的附近对f(x)做二阶泰勒展开,进而找到极小点的下一个估计

值,反复迭代直到函数的一阶导数小于某个接近0的阀值。最终求出极小点的估计值。

牛顿法实现的动图如下所示:

注意

使用牛顿法时会用到hessian矩阵

牛顿法的优缺点

优点:

  • 牛顿法既用到了一阶导数的信息,也用到了二阶导数的信息
  • 牛顿法是用二次函数来代替目标函数,所以牛顿法的收敛速度是更快的

缺点:

  • hessian矩阵不一定可逆
  • 即使hessian矩阵可逆, 当 hessian 矩阵规模很大,非常耗时

作用

  1. 方程求解:牛顿法可以用于求解非线性方程的根。通过不断迭代,牛顿法可以快速逼近方程的根,尤其在初始点附近,收敛速度通常很快。因此,牛顿法在科学计算、物理建模等领域中广泛应用,例如求解非线性方程、求解微分方程的初值问题等。

  2. 优化问题:牛顿法可以用于求解函数的最小值或最大值。通过利用函数的二阶导数信息,牛顿法能够更快地收敛到函数的最优解。在优化问题中,牛顿法常用于求解无约束优化问题或约束优化问题的局部最优解。它在数学建模、机器学习、数据分析等领域中具有重要应用,例如最小二乘法、逻辑回归、神经网络等模型的参数优化。

  3. 数值分析:牛顿法是数值分析中的一种重要方法。它提供了一种逼近函数根或最优解的有效途径,通过迭代和近似计算,能够在有限步骤内得到满足要求的解。牛顿法是一种高效的数值计算方法,可以用于求解复杂的数学问题,如非线性方程组的求解、多元函数的最小值等。

  • 15
    点赞
  • 111
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
最优化是指在一定的约束条件下,寻找一个使目标函数取得最大值或最小值的过程。梯度下降法牛顿法都是最优化问题中常用的方法。梯度下降法是一种迭代优化算法,通过计算目标函数的梯度来不断更新参数的值,直到达到某个停止条件。梯度下降法的思想是沿着目标函数梯度的反方向进行参数调整,以逐步接近最优解。它适用于凸函数和可微函数,并且可以用于求解无约束优化问题和约束优化问题的局部最优解。 牛顿法也是一种迭代优化算法,它利用函数的二阶导数信息(Hessian矩阵)来逼近函数的局部性质,从而更快地收敛到最优解。牛顿法在求解方程根或函数的最小值时非常有效。它经常被用于数学建模、机器学习、数据分析等领域中的参数优化问题,比如最小二乘法、逻辑回归、神经网络等模型的参数优化。 需要注意的是,梯度下降法牛顿法在不同情况下的效果可能会有所不同。梯度下降法在参数空间中沿着梯度方向逐步搜索最优解,对于大规模数据集和高维参数空间比较适用。而牛顿法利用了更多的二阶导数信息,对于曲率较大的函数,在局部区域更容易找到最优解。但是牛顿法在计算复杂度和存储空间上可能会有一定的挑战。因此,在实际应用中,我们需要根据具体问题的特点选择合适的优化方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我还可以熬_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值