概率论--数学期望与方差--协方差(详解)

目录

数学期望与方差

离散型随机变量的数学期望

注意

连续型随机变量的数学期望 

        方差

常用随机变量服从的分布

 二项分布

正态分布

随机向量与随机变量的独立性

随机向量

随机变量的独立性

协方差

协方差的定义

协方差的意义

协方差矩阵


数学期望与方差

离散型随机变量的数学期望

离散型随机变量的数学期望是指该变量的所有可能取值乘以其对应的概率的总和。数学期望可以用以下公式表示:

E(X) = Σ(x * P(X=x))

其中,E(X)表示随机变量X的数学期望,x表示X的取值,P(X=x)表示X取值为x的概率。

换句话说,数学期望是随机变量所有可能取值的加权平均值,其中权重是对应取值的概率。

注意

对概率大的取值,该值出现的机会就大,也就是在计算取值的平均时其权重就大,因此用概率作为一种“权重”做加权计算平均值

举个栗子:

1.假设买彩票有 0.2 的概率中 500 万,0.3 的概率中 1 万,0.5 的概率中 0.1 万,

那可能的收益不可能用 500+1+0.1 来平均一下,肯定要考虑概率值

500x0.2 +1x0.3 + 0.1x0.5

2.假设有一个离散型随机变量X,其可能取值为1、2和3,对应的概率分别为0.3、0.4和0.3。那么X的数学期望可以计算如下:

E(X) = (1 * 0.3) + (2 * 0.4) + (3 * 0.3) = 0.3 + 0.8 + 0.9 = 2

所以,这个随机变量X的数学期望为2。

连续型随机变量的数学期望 

 对于连续型随机变量,数学期望的计算方式与离散型随机变量略有不同。数学期望仍然表示随机变量的加权平均值,但在连续型情况下,需要使用积分来进行计算。

连续型随机变量X的数学期望可以表示为:

E(X) = ∫(x * f(x)) dx

其中,E(X)表示随机变量X的数学期望,x表示X的取值,f(x)表示X的概率密度函数(PDF)。

简单来说,数学期望是随机变量X乘以其概率密度函数的积分

举个例子,假设有一个连续型随机变量X,其概率密度函数为f(x) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我还可以熬_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值