SBT(Size Balanced Tree节点大小平衡树)是一种自平衡二叉查找树,通过子树的大小来保持平衡。与红黑树、AVL树等平衡二叉查找树相比,SBT更容易实现。SBT可以在的时间内完成所有二叉搜索树的相关操作,与普通二叉搜索树相比,SBT仅加入了简洁的核心操作maintain。由于SBT把持平衡的是size域而不是其他的域,所以可以方便地实现动态顺序统计中的第k小和排名操作。
SBT性质
对SBT的每个节点T,其左儿子为L,右儿子为R,子树A、B为L的左右子树,C、D为R的左右子树。T右子树的大小都大于等于T左子树的两个子树的大小,即;T左子树的大小都大于等于右子树的两个子树的大小,即
。也就是说,“叔叔”≥“侄子”
1、左旋和右旋
void R_rotate(int &x)
{
int y=tr[x].ls;
tr[x].ls=tr[y].rs;
tr[y].rs=x;
tr[y].size=tr[x].size;
tr[x].size=tr[tr[x].ls].size+tr[tr[x].rs].size+1;
x=y;
}
void L_rotate(int &x)
{
int y=tr[x].rs;
tr[x].rs=tr[y].ls;
tr[y].ls=x;
tr[y].size=tr[x].size;
tr[x].size=tr[tr[x].ls].size+tr[tr[x].rs].size+1;
x=y;
}
2、维护
插入新节点时,有可能不满足SBT的性质,需要根据插入位置的不同,进行相应的旋转,以达到平衡状态。调整平衡分为4种情况:LL、LR、RR和RL。
(1)LL型。一棵SBT,若将新节点x插入节点A(T左子树的左子树)之后,