算法笔记——SBT

        SBT(Size Balanced Tree节点大小平衡树)是一种自平衡二叉查找树,通过子树的大小来保持平衡。与红黑树、AVL树等平衡二叉查找树相比,SBT更容易实现。SBT可以在O(logn)的时间内完成所有二叉搜索树的相关操作,与普通二叉搜索树相比,SBT仅加入了简洁的核心操作maintain。由于SBT把持平衡的是size域而不是其他的域,所以可以方便地实现动态顺序统计中的第k小和排名操作。

SBT性质

        对SBT的每个节点T,其左儿子为L,右儿子为R,子树A、B为L的左右子树,C、D为R的左右子树。T右子树的大小都大于等于T左子树的两个子树的大小,即size[R]\geqslant size[A],size[R]\geqslant size[B];T左子树的大小都大于等于右子树的两个子树的大小,即size[L]\geqslant size[C],size[L]\geqslant size[D]。也就是说,“叔叔”≥“侄子”

1、左旋和右旋

void R_rotate(int &x)
{
    int y=tr[x].ls;
    tr[x].ls=tr[y].rs;
    tr[y].rs=x;
    tr[y].size=tr[x].size;
    tr[x].size=tr[tr[x].ls].size+tr[tr[x].rs].size+1;
    x=y;
}

void L_rotate(int &x)
{
    int y=tr[x].rs;
    tr[x].rs=tr[y].ls;
    tr[y].ls=x;
    tr[y].size=tr[x].size;
    tr[x].size=tr[tr[x].ls].size+tr[tr[x].rs].size+1;
    x=y;
}

2、维护

        插入新节点时,有可能不满足SBT的性质,需要根据插入位置的不同,进行相应的旋转,以达到平衡状态。调整平衡分为4种情况:LL、LR、RR和RL。

        (1)LL型。一棵SBT,若将新节点x插入节点A(T左子树的左子树)之后,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值