ソーシャルゲーム题解

题目大意

题目传送门:ソーシャルゲーム

题目解释:

求给定序列 a a a 的非空最大子段和。

思路分析

很简单,我们用动态规划算法。

设定

d p [ i ] dp[i] dp[i] 代表第 i i i 个数的最大子段和。

初始化

d p [ i ] dp[i] dp[i] 最开始赋值为 a [ i ] a[i] a[i]

状态转移

只要 d p [ i − 1 ] + a [ i ] > d p [ i ] dp[i-1]+a[i]>dp[i] dp[i1]+a[i]>dp[i] ,那么 d p [ i ] = d p [ i − 1 ] + a [ i ] dp[i]=dp[i-1]+a[i] dp[i]=dp[i1]+a[i] 。故状态转移方程式为:
d p [ i ] = d p [ i − 1 ] + a [ i ] dp[i]=dp[i-1]+a[i] dp[i]=dp[i1]+a[i]

代码

直接上代码。

#include<bits/stdc++.h>
using namespace std;
#define cin(x) scanf("%d",&x)
#define cout(x) printf("%d ",x)
#define endl puts("")
int n,dp[(int)2e5+100],a[(int)2e5+100],maxx=-INT_MAX; 
signed main(){
	cin(n);
	for(int i = 1;i<=n;i++){
		cin(a[i]);
		dp[i]=a[i];//初始化
	}
	for(int i = 1;i<=n;i++){
		dp[i] = max(dp[i],dp[i-1]+a[i]);//记录dp[i]
		maxx = max(dp[i],maxx);//记录最大答案
	}
	cout(maxx);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值