BM61 矩阵最长递增路径

12 篇文章 0 订阅

描述

给定一个 n 行 m 列矩阵 matrix ,矩阵内所有数均为非负整数。 你需要在矩阵中找到一条最长路径,使这条路径上的元素是递增的。并输出这条最长路径的长度。
这个路径必须满足以下条件:

  1. 对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外。
  2. 你不能走重复的单元格。即每个格子最多只能走一次。
    数据范围:1≤n,m≤1000, 0 ≤ m a t r i x [ i ] [ j ] ≤ 1000 0 le matrix[i][j] le 1000 0≤matrix[i][j]≤1000
    进阶:空间复杂度 O(nm) ,时间复杂度 O(nm)

例如:当输入为[[1,2,3],[4,5,6],[7,8,9]]时,对应的输出为5,
其中的一条最长递增路径如下图所示:
请添加图片描述

示例1
输入:[[1,2,3],[4,5,6],[7,8,9]]
返回值:5
说明:1->2->3->6->9即可。当然这种递增路径不是唯一的。

示例2
输入:
[[1,2],[4,3]]
复制
返回值:
4
复制
说明:
1->2->3->4
备注:矩阵的长和宽均不大于1000,矩阵内每个数不大于1000

代码

class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     * 递增路径的最大长度
     * @param matrix int整型vector<vector<>> 描述矩阵的每个数
     * @return int整型
     */
    int Max=0;
    int dfs(vector<vector<int>> &mat,vector<vector<int>>  &dp, int i,int j,int pre){
        if(pre>=mat[i][j])
            return 0;
        int mx=0;
        if(dp[i][j]!=-1)
            return dp[i][j];
        if(i+1<mat.size()){
            mx=max(mx, dfs(mat,dp, i+1, j, mat[i][j]));
        }
        if(i-1>=0){
            mx=max(mx, dfs(mat,dp, i-1, j, mat[i][j]));
        }
        if(j+1<mat[0].size()){
            mx=max(mx, dfs(mat,dp, i, j+1, mat[i][j]));
        }
        if(j-1>=0){
            mx=max(mx, dfs(mat,dp, i, j-1, mat[i][j]));
        }
        dp[i][j]=mx+1;
        return mx+1;
    }
    int solve(vector<vector<int> >& matrix) {
        // write code here
        if(matrix.size()==0)
            return 0;
        vector<vector<int>> dp(matrix.size(),vector<int> (matrix[0].size(),-1));
        for(int i=0;i<matrix.size();i++){
            for(int j=0;j<matrix[0].size();j++){
                Max=max(Max,dfs(matrix,dp, i, j,-1));
            }
        }
        return Max;
    }
};

总结

写到这里也结束了,在文章最后放上一个小小的福利,以下为小编自己在学习过程中整理出的一个关于 java开发 的学习思路及方向。从事互联网开发,最主要的是要学好技术,而学习技术是一条慢长而艰苦的道路,不能靠一时激情,也不是熬几天几夜就能学好的,必须养成平时努力学习的习惯,更加需要准确的学习方向达到有效的学习效果。

由于内容较多就只放上一个大概的大纲,需要更及详细的学习思维导图的 点击我的Gitee获取
还有 高级java全套视频教程 java进阶架构师 视频+资料+代码+面试题!

全方面的java进阶实践技术资料,并且还有技术大牛一起讨论交流解决问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值