描述
给定一个 n 行 m 列矩阵 matrix ,矩阵内所有数均为非负整数。 你需要在矩阵中找到一条最长路径,使这条路径上的元素是递增的。并输出这条最长路径的长度。
这个路径必须满足以下条件:
- 对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外。
- 你不能走重复的单元格。即每个格子最多只能走一次。
数据范围:1≤n,m≤1000, 0 ≤ m a t r i x [ i ] [ j ] ≤ 1000 0 le matrix[i][j] le 1000 0≤matrix[i][j]≤1000
进阶:空间复杂度 O(nm) ,时间复杂度 O(nm)
例如:当输入为[[1,2,3],[4,5,6],[7,8,9]]时,对应的输出为5,
其中的一条最长递增路径如下图所示:
示例1
输入:[[1,2,3],[4,5,6],[7,8,9]]
返回值:5
说明:1->2->3->6->9即可。当然这种递增路径不是唯一的。
示例2
输入:
[[1,2],[4,3]]
复制
返回值:
4
复制
说明:
1->2->3->4
备注:矩阵的长和宽均不大于1000,矩阵内每个数不大于1000
代码
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
* 递增路径的最大长度
* @param matrix int整型vector<vector<>> 描述矩阵的每个数
* @return int整型
*/
int Max=0;
int dfs(vector<vector<int>> &mat,vector<vector<int>> &dp, int i,int j,int pre){
if(pre>=mat[i][j])
return 0;
int mx=0;
if(dp[i][j]!=-1)
return dp[i][j];
if(i+1<mat.size()){
mx=max(mx, dfs(mat,dp, i+1, j, mat[i][j]));
}
if(i-1>=0){
mx=max(mx, dfs(mat,dp, i-1, j, mat[i][j]));
}
if(j+1<mat[0].size()){
mx=max(mx, dfs(mat,dp, i, j+1, mat[i][j]));
}
if(j-1>=0){
mx=max(mx, dfs(mat,dp, i, j-1, mat[i][j]));
}
dp[i][j]=mx+1;
return mx+1;
}
int solve(vector<vector<int> >& matrix) {
// write code here
if(matrix.size()==0)
return 0;
vector<vector<int>> dp(matrix.size(),vector<int> (matrix[0].size(),-1));
for(int i=0;i<matrix.size();i++){
for(int j=0;j<matrix[0].size();j++){
Max=max(Max,dfs(matrix,dp, i, j,-1));
}
}
return Max;
}
};
总结
写到这里也结束了,在文章最后放上一个小小的福利,以下为小编自己在学习过程中整理出的一个关于 java开发 的学习思路及方向。从事互联网开发,最主要的是要学好技术,而学习技术是一条慢长而艰苦的道路,不能靠一时激情,也不是熬几天几夜就能学好的,必须养成平时努力学习的习惯,更加需要准确的学习方向达到有效的学习效果。
由于内容较多就只放上一个大概的大纲,需要更及详细的学习思维导图的 点击我的Gitee获取。
还有 高级java全套视频教程 java进阶架构师 视频+资料+代码+面试题!
全方面的java进阶实践技术资料,并且还有技术大牛一起讨论交流解决问题。