LeetCode 329. 矩阵中的最长递增路径

 

给定一个整数矩阵,找出最长递增路径的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

示例 1:

输入: nums = 
[
  [9,9,4],
  [6,6,8],
  [2,1,1]
] 
输出: 4 
解释: 最长递增路径为 [1, 2, 6, 9]。

示例 2:

输入: nums = 
[
  [3,4,5],
  [3,2,6],
  [2,2,1]
] 
输出: 4 
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。
//思路一
class Solution {   
    public static int n,m;
    
    public static int f[][] = new int[1000][1000];
    
    public static boolean check(int x,int y,int nx,int ny,int[][] mat){//能不能走到下一个格子,那些格子可以继续拓展
        return x >=0 && y>= 0 && nx >=0 && ny >=0 && x < n && y <m && nx < n && ny <m && mat[x][y] > mat[nx][ny];
    }
    
    public int robot(int x,int y,int[][] mat){//最远能走多少步
        
        if(f[x][y] > 0){
            return f[x][y];
        }
        
        int max = 0;
        for(int dx = -1;dx <= 1;dx++){
            for (int dy = -1;dy <= 1;dy++){
                if(Math.abs(dx + dy) ==1){
                    if(check(x,y,x+dx,y+dy,mat))
                        max = Math.max(max,robot(x+dx,y+dy,mat)) ;
                }
            }
        }
        f[x][y] = max + 1;
        return max+1;
    }    
    
    //枚举最后出发的位置
    public int longestIncreasingPath(int[][] matrix) { 

        n = matrix.length;
        if (n==0){
            return 0;
        }
        
        m = matrix[0].length;
        
        for(int i = 0;i< n;i++){
            for(int j = 0;j < m; j++){
                f[i][j] = 0;
            }
        }

        int ans = 0;
        for(int i =0;i<n;i++){
            for(int j = 0;j<m;j++){
                ans = Math.max(ans,robot(i,j,matrix));
            }
        }
        return ans;
    }
}

//思路二
public class Solution {
    private int[] ro = {-1, 1, 0, 0};
    private int[] co = {0, 0, -1, 1};
    private int find(int[][] matrix, boolean[][] visited, int[][] path, int row, int col) {
        
        if (visited[row][col]) 
            return path[row][col];
        
        path[row][col] = 1;
        for(int i=0; i<4; i++) {
            int r = row + ro[i];
            int c = col + co[i];
            if (r>=0 && r<matrix.length && c>=0 && c<matrix[r].length && matrix[row][col] > matrix[r][c]) {
                path[row][col] = Math.max(path[row][col], find(matrix, visited, path, r, c)+1);
            }
        }
        visited[row][col] = true;
        return path[row][col];
    }
    
    public int longestIncreasingPath(int[][] matrix) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) 
            return 0;
        
        boolean[][] visited = new boolean[matrix.length][matrix[0].length];
        
        int[][] path = new int[matrix.length][matrix[0].length];
        
        int max = 0;
        
        for(int i=0; i<matrix.length; i++) {
            for(int j=0; j<matrix[i].length; j++) {
                max = Math.max(max, find(matrix, visited, path, i, j));
            }
        }
        return max;
    }
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值