基于深度学习的手势识别系统(Python代码,UI界面版)

本文详述了一个基于Python和MediaPipe的深度学习手势识别系统,结合PyQt提供UI界面,支持图片、视频和摄像头实时手势检测。通过改进的SSD算法对手掌检测和关节定位,实现高精度、快速识别。提供了完整代码和下载链接。
摘要由CSDN通过智能技术生成

功能演示动图

摘要:本文详细介绍基于深度学习的手势识别系统,在介绍手势识别算法原理的同时,给出了_P__y__t__h__o__n_的实现代码以及_P__y__Q__t_的UI界面。手势识别采用了基于MediaPipe的改进SSD算法,进行手掌检测后对手部关节坐标进行关键点定位;在系统界面中可以选择手势图片、视频进行检测识别,也可通过电脑连接的摄像头设备进行实时识别手势;可对图像中存在的多个手势进行姿势识别,可选择任意一个手势显示结果并标注,实时检测速度快、识别精度较高。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。本博文目录如下:

文章目录

?点击跳转至文末所有涉及的完整代码文件下载页?

代码介绍及演示视频链接:https://www.bilibili.com/video/BV12a411v7vr(正在更新中,欢迎关注博主B站视频)


前言

随着计算机性能的发展,人机交互越来越频繁。在工程应用方面,计算机通过对手势的分析理解,可以进一步开发出相应的远程操控系统,在疫情当下,可以更好的实现零接触操作。同时通过手势也可以进一步了解人的表情与情感,例如在警匪影片中,通过手势的微小变化,对罪犯的阐述进行分析判断,但这只是更深层次的系统设想。

手势识别是个计划已久的项目,通过手势可以传达很多信息,从而实现很多好玩的事情,比如石头剪刀布、切水果等游戏。网上也有一些相关手势识别的博客或代码,不过很少有人对其进行详细介绍,为了便于演示和交付用户使用,我们将其开发成一个可以展示的完整软件,方便选择文件和实时检测。对此这里给出博主设计的界面,关注过的朋友可能清楚我的简约风,功能上也满足了图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:

初始化的界面

检测手势时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个手势,也可开启摄像头或视频检测:

在这里插入图片描述

详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


  1. 效果演示
    =======

手势识别系统借助深度学习算法,开发有选择图片识别、视频识别以及摄像画面识别,结果的可视化显示功能,这里给出几张动图供大家参考。

(一)选择手势图片识别

可点击手势识别系统中的图片选择按钮,即可弹出图片文件选择窗口,选中文件后自动显示识别结果;对于多个手势,可通过下拉框选择单独显示结果。本功能的界面展示如下图所示:

在这里插入图片描述

(二)手势视频识别效果展示

对于视频文件同样可以通过对应的视频选择按钮,选中可用的视频后自动利用算法对视频帧进行逐个识别,此时对算法和设备的实时性要求较高,但系统同样能够保持高的检测速度。效果如下图所示:

在这里插入图片描述

(三)摄像头检测效果展示

在真实场景中,我们往往利用设备摄像头获取实时画面,同时需要对画面中的手势进行识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的手势,识别结果展示如下图:

在这里插入图片描述


  1. 手势识别原理介绍
    ===========

2.1 研究现状

目前现阶段手势识别的研究方向主要分为:基于穿戴设备的手势识别和基于视觉方法的手势识别。基于穿戴设备的手势识别主要是通过在手上佩戴含有大量传感器的手套获取大量的传感器数据,并对其数据进行分析。该种方法相对来虽然精度比较高,但是由于传感器成本较高很难在日常生活中得到实际应用,同时传感器手套会造成使用者的不便,影响进一步的情感分析,所以此方法更多的还是应用在一些特有的相对专业的仪器中。而本博客更多的还是将关注点放在基于视觉方法的手势研究中,在此特地以Mediapipe的框架为例,方便读者更好的复现和了解相关领域。

基于视觉方法的手势识别主要分为静态手势识别和动态手势识别两种。从文字了解上来说,

基于深度学习手势识别UI界面代码可以分为两个主要部分:前端和后端。前端负责用户交互和界面展示,后端则处理手势识别的算法和模型。 以下是一个简单的基于深度学习手势识别UI界面代码示例: 前端代码(使用Python的Tkinter库): ```python import tkinter as tk from PIL import ImageTk, Image # 创建窗口 window = tk.Tk() window.title("手势识别UI界面") # 创建画布 canvas = tk.Canvas(window, width=400, height=400) canvas.pack() # 显示手势图片 image = Image.open("gesture_image.jpg") image = image.resize((400, 400), Image.ANTIALIAS) photo = ImageTk.PhotoImage(image) canvas.create_image(0, 0, anchor=tk.NW, image=photo) # 创建按钮 button = tk.Button(window, text="识别手势") button.pack() # 运行窗口 window.mainloop() ``` 后端代码(使用Python深度学习框架TensorFlow): ```python import tensorflow as tf # 加载训练好的模型 model = tf.keras.models.load_model("gesture_model.h5") # 进行手势识别 def recognize_gesture(image): # 对图像进行预处理 processed_image = preprocess_image(image) # 使用模型进行预测 prediction = model.predict(processed_image) # 解析预测结果 gesture = parse_prediction(prediction) return gesture # 预处理图像 def preprocess_image(image): # 进行图像预处理操作,如缩放、归一化等 return processed_image # 解析预测结果 def parse_prediction(prediction): # 解析预测结果,返回手势类别 return gesture_class # 调用手势识别函数 gesture = recognize_gesture(image) print("识别结果:", gesture) ``` 请注意,以上代码仅为示例,实际的手势识别UI界面代码可能会更加复杂,并且需要根据具体的需求进行定制。另外,手势识别的算法和模型的实现也需要根据具体情况进行选择和训练。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值