Apriori算法大概流程(例题说明)

本文详细介绍了Apriori算法的工作原理,包括如何找到所有满足最小支持度的频集,以及如何生成满足最小可信度的强关联规则。通过实例说明了求解频繁项集和强关联规则的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:Apriori算法思想

首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。
然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。

二:"上"例题

58c98b308d8441258aa8efb83ca4aec7.png

三:求所有频繁项集(核心是支持度=50%)

1,求(频繁)标准

=支持度*项数=4*0.5=2

所以现在知道出现次数为2的就是频繁项集

2,依次求项数为1,2,3的出现次数(>2即可)

3,现在求项数为1的出现次数

5fcdb71a2bc34435a2b1f3a90b8c63a5.png

4,现在求项数为2的出现次数(基于3)

注意:{1,3}出现两次不一定就是按顺序的{1,3},谁在前谁在后符合即可

           {1,2,3}也表示{1,3}出现一次

da5bb28159c849e792dd002d54382850.png

5,现在求项数为3的出现次数(基于4)

4e69481d67be4d3a8f43be07beef4891.png

这样频繁项集就求完啦

四,求强关联规则(核心是可信度是70%)

简单理解:就是求前面项数分别为1,2,3的频繁项集之间的关联要>70%

3项数 / 2项数:

注意:1,需要返回前面查看出现次数哦

           2,比的时候需要是相关联的,像{2,3,5}不包含{1,3},就不用计算

04bba8097fa3431383963ccec89d5417.png

2项数 / 1项数:

注意:比的时候也是需要相关联的,{1,3}包含1也包含3,所以才有下面前两个

42ac7a601ede4674a300566f20fad2c0.png

现在上面大于0.7的就是满足条件的强关联啦

还想看更多,来啦!!!

1,大数据比赛篇全国职业院校技能大赛-大数据比赛心得体会_全国职业职业技能比赛 大数据-CSDN博客

2,求职简历篇(超实用)大学生简历写作指南:让你的简历脱颖而出-CSDN博客

3,AIGC心得篇aigc时代,普通人需要知道的-CSDN博客

4,数据分析思维篇学习数据分析思维的共鸣-CSDN博客

5,中年危机篇“中年危机”如何转变为“中年机遇”-CSDN博客

其他需求,看主页哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耐思nice~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值