一:Apriori算法思想
首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。
然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。
二:"上"例题

三:求所有频繁项集(核心是支持度=50%)
1,求(频繁)标准
=支持度*项数=4*0.5=2
所以现在知道出现次数为2的就是频繁项集
2,依次求项数为1,2,3的出现次数(>2即可)
3,现在求项数为1的出现次数
4,现在求项数为2的出现次数(基于3)
注意:{1,3}出现两次不一定就是按顺序的{1,3},谁在前谁在后符合即可
{1,2,3}也表示{1,3}出现一次
5,现在求项数为3的出现次数(基于4)
这样频繁项集就求完啦
四,求强关联规则(核心是可信度是70%)
简单理解:就是求前面项数分别为1,2,3的频繁项集之间的关联要>70%
3项数 / 2项数:
注意:1,需要返回前面查看出现次数哦
2,比的时候需要是相关联的,像{2,3,5}不包含{1,3},就不用计算
2项数 / 1项数:
注意:比的时候也是需要相关联的,{1,3}包含1也包含3,所以才有下面前两个
现在上面大于0.7的就是满足条件的强关联啦
还想看更多,来啦!!!