图的Prim算法真的不难

我想分享以下几个有关图的算法,这四个算法分别是Prim算法、Kruskal算法、Dijkstra算法、Floyed算法。

在这里,Prim算法、Kruskal算法需要使用到最小生成树的知识。

生成树:连通图的生成树是包含图中·全部顶点的一个极小连通子图。

最小生成树:在生成树的概念里面加入权值的概念,代价最小的生成树就是最小生成树。

Prim算法

设G=(V,E)是无向连通网,T=(U,TE)是G的最小生成树。

Prim算法的基本思想是:从初始状态U={u)(v∈V)、TE=(}开始,重复执行下述操作:在所有i∈U5∈V-U的边中找一条代价最小的边(i,j)并入集合TE,同时j并人U,直至U=V为止,此时TE中有n一1条边,T是一棵最小生成树。

Prim算法基于的存储结构: ①图的存储结构:由于在算法执行过程中,需要不断读取任意两个顶点之间边的权值,所以,图采用邻接矩阵存储。 ②候选最短边集:设数组adjvex[n]和lowcost[n]分别表示候选最短边的邻接点和 权值,候选最短边(i,j)的权值为w,其中i∈V-U,j∈U。 adjvex[i]=j lowcost[i]=w 初始时,U={v},lowcost[v]=0表示顶点v已加人集合U中,数组元素adjvex[i]=v,lowcost[i]=边(v,i)的权值(1≤i≤n一1)。每一轮迭代时,在数组lowcost[n]中选取最小权值lowcost [j],由于顶点j从集合V一U进入集合U后,候选最短边集发生了变化.对数组adjvex[n]和lowcost[n]进行更新,然后将lowcost[j]置为0,表示将顶点j加人集合U中.

lowcost[i]=min{lowcost[i],边(i,j)的权值}

adjvex[i]=j(如果边(i,j)的权值<lowcost[i])

 

#include<iostream>
using namespace std;

const int MaxSize = 10; //图中最多顶点个数
int visited[MaxSize] = {0}; //全局数组变量visited初始化
template<typename DataType> 
class MGraph
{
public:
MGraph(DataType a[ ], int n, int e); //构造函数,建立具有n个顶点e条边的图
~MGraph( ){ }; //析构函数
void Prim(int v);
private:
DataType vertex[MaxSize]; //存放图中顶点的数组
int edge[MaxSize][MaxSize]; //存放图中边的数组
int vertexNum, edgeNum; //图的顶点数和边数

int MinEdge(int r[ ], int n);
};

template<typename DataType> 
MGraph<DataType>:: MGraph(DataType a[ ], int n, int e)
{
int i, j, k, w;
vertexNum = n; edgeNum = e;
for (i = 0; i < vertexNum; i++) //存储顶点
vertex[i] = a[i];
for (i = 0; i < vertexNum; i++) //初始化邻接矩阵
for (j = 0; j < vertexNum; j++)
if (i == j)
edge[i][j] = 0;
else
edge[i][j] = 100; //假设边上权的最大值是100
for (k = 0; k < edgeNum; k++) //依次输入每一条边
{
cout << "请输入边依附的两个顶点的编号,以及边上的权值:";
cin >> i >> j >> w; //输入边依附的两个顶点的编号
edge[i][j] = w; edge[j][i] = w; //置有边标志
}
}

template<typename DataType> 
void MGraph<DataType>:: Prim(int v) //从顶点v出发
{
int i, j, k;
int adjvex[MaxSize], lowcost[MaxSize];
for (i = 0; i < vertexNum; i++) //初始化辅助数组
{
lowcost[i] = edge[v][i]; adjvex[i] = v;
}
lowcost[v] = 0; //将顶点v加入集合U
for (k = 1; k < vertexNum; k++) //迭代n-1次
{
j = MinEdge(lowcost, vertexNum); //寻找最短边的邻接点j
cout << "(" << vertex[j] << "," << vertex[adjvex[j]] << ")" << lowcost[j] << endl;
lowcost[j] = 0; //顶点j加入集合U
for (i = 0; i < vertexNum; i++) //调整辅助数组
if (edge[i][j] < lowcost[i]) {
lowcost[i] = edge[i][j];
adjvex[i] = j;
}
}
}

template<typename DataType> 
int MGraph<DataType>:: MinEdge(int r[ ], int n)
{
int index = 0, min = 100; //此处如果仅记载最小值下标会有bug
for (int i = 1; i < n; i++)
if (r[i] != 0 && r[i] < min)
{
min = r[i]; index = i;
}
return index;
}

int main( )
{
/*测试数据使用教材 图6-16 所示带权无向图, 输入边依次为
(0 1 34)(0 2 46)(0 5 19)(1 4 12)(2 3 17)(2 5 25)(3 4 38)(3 5 25)(4 5 26) */
char ch[ ]={'A','B','C','D','E','F'};
MGraph<char> MG(ch, 6, 9);
MG.Prim(0);
return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Prim算法和Kruskal算法都是求解的最小生成树问题的经典算法,它们的思想和实现方法不同,下面是它们的实验小结。 1. Prim算法 Prim算法是一种贪心算法,它从的某个点开始,逐步扩展生成树,直到生成整个的最小生成树。算法步骤如下: 1.1 选取任意一个点作为起始点,将该点加入生成树中。 1.2 找到与当前生成树相连的边中,权重最小的边,将其连接的点加入生成树中。 1.3 重复步骤1.2,直到生成整个的最小生成树。 Prim算法的时间复杂度为O(E log V),其中 E 表示边的数量,V 表示点的数量。Prim算法的优点是实现简单,适用于稠密;缺点是不适用于稀疏。 2. Kruskal算法 Kruskal算法也是一种贪心算法,它从的所有边开始,逐步扩展生成树,直到生成整个的最小生成树。算法步骤如下: 2.1 将中所有边按照权重从小到大排序。 2.2 依次选择每条边,判断该边的两个端点是否在同一连通块中,如果不在,则将它们合并,并将该边加入生成树中。 2.3 重复步骤2.2,直到生成整个的最小生成树。 Kruskal算法的时间复杂度为O(E log E),其中 E 表示边的数量。Kruskal算法的优点是适用于稀疏;缺点是实现相对复杂。 综上所述,Prim算法和Kruskal算法都是求解的最小生成树问题的有效算法,选择哪种算法主要取决于的性质和算法实现的难易程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值