利用opencv进行人脸定位并用贴图遮挡人脸
人物图

脸部遮挡图

需要的python库:opencv(cv2),numpy
全部代码:
import cv2 as cv
import numpy as np
face = cv.imread('li.jpeg') # 读取原图
img = cv.imread('not.png') # 读取贴图
face_detector = cv.CascadeClassifier("./head.xml")
# 分别转灰度图
gray_li = cv.cvtColor(face, cv.COLOR_BGR2GRAY)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 贴图的灰度图
gray = cv.GaussianBlur(gray, (5, 5), 1) # 对贴图的灰度图进行高斯模糊
_, binary = cv.threshold(gray, 220, 255, cv.THRESH_BINARY) # 高斯模糊后进行二值化处理
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) # 找到贴图的轮廓
# 保存所有轮廓区域
area = []
for contour in contours:
area.append(cv.contourArea(contour))
area = np.array(area)
index = area.argsort() # 由小到大排序
mask = np.zeros_like(gray, dtype=np.uint8) # 创建相同大小的mask,注意必须转uint8
mask = cv.drawContours(mask, contours, index[-2], (255, 255, 255), -1) # 绘制轮廓图
faces = face_detector.detectMultiScale(gray_li) # 人脸定位
# 循环并贴上贴图
for x, y, w, h in faces:
mask2 = cv.resize(mask, (w, h)) # 将轮廓缩放至人脸大小
img2 = cv.resize(img, (max(w, h), max(w, h))) # 将贴图缩放至人脸大小
for i in range(h):
for j in range(w):
if (mask2[i, j] == 255).all(): # 判断轮廓图中所有白色值
face[i + y, j + x] = img2[i, j] # 人脸填充
cv.imshow('img', face)
cv.waitKey()
cv.destroyAllWindows()
这里面需要说明的就是:
mask = np.zeros_like(gray, dtype=np.uint8) # 创建相同大小的mask,注意必须转uint8
mask = cv.drawContours(mask, contours, index[-2], (255, 255, 255), -1) # 绘制轮廓图
必须搞一下,转换为uint8,不然会报错。另外关于cv.drawContours()的用法,大家可以自己查一下,我这边组织语言能力不足,怕越讲越乱。
最后效果:

嗯。就是这样