《计算机视觉中的多视几何》讲解2.21

一,二维齐次坐标系统

1,直线的齐次表示

    在二维平面中,直线可以用ax+by+c=0的方程表示,提取系数可记为(a,b,c)这样的三维向量的形式,同时,任意的(ka)x+(kb)y+(kc)=0所表示的直线与上述直线其实是同一条,即(a,b,c)与(ka,kb,kc)是一样的,那么为了方便表示,我们将ax+by+c=0这一类的直线统一记为(a/c,b/c,1)的形式(当c≠0时),称为二维平面直线的齐次坐标;

2,点的齐次表示

   点在二维平面上可以用(a,b)表示,化为齐次坐标只需要写为(a,b,1)即可,

Attention 

   上述直线与点的齐次坐标,只是一种表示形式,这为后续的运算与描述带来了很多便利这里并未介绍,但在研究后续之前,必须明确两个事情

  1. 对于点(1,1)化为(1,1,1)这样的齐次坐标后,这种三维向量只是一种方便运算的方式,与x=1,y=1,z=1这样一个欧氏几何中的三维点毫无关系;
  2. 对于一个三维向量(齐次坐标)(1,1,1)来说,其本身有可能代表(1,1)这样一个二维点,也有可能代表x+y+1=0这样一个二维平面上的直线,同时(1,1)点也不在x+y+1=0这条直线上,故,当一个三维齐次向量给出时,明确它代表一个点还是一条线是重要的;    

 二,二维齐次坐标系统中的运算

  当所有的二维直线与点都由齐次坐标表示后,向量之间只有矩阵乘法(内积)与叉乘两种运算方式,对于齐次坐标作加减法是没有意义的!!

结论2.1:点x在直线I上当且仅当\, x^{T}I=0(其中x代表点的齐次坐标,I代表直线的齐次坐标)

证明:当点(a1,b1)在直线ax+by+c=0上时满足,a*a1+b*b1+c*1=0,写成矩阵的形式:

\begin{pmatrix} a1 &b1 &1 \end{pmatrix}\begin{pmatrix} a\\b \\ c \end{pmatrix}=0   

这时正好也满足点的齐次形式,再将直线ax+by+c=0表示成更一般的齐次形式\begin{pmatrix} a1 &b1 &1 \end{pmatrix}\begin{pmatrix} a/c\\b/c \\ 1 \end{pmatrix}=0

自由度(dof):显然在齐次坐标中唯一的一条直线或点都有两个自由度

结论2.2:两直线I和I'的交点是点x=I×I'(其中运算符代表叉乘)

说明:由结论 2.1不难看出,一个点x满足是I与I'的交点的充要条件是\, x^{T}I=0\, x^{T}I'=0,那么我们只需要沿着这个思路证明x=I×I'时,满足以上条件即可

证明:这里需要说明一些几何直观的事实:

1,两个三维向量叉乘的结果首先是一个三维向量,其次是与叉乘的两个向量“垂直”

2,两个“垂直”的向量的内积为0

由上述两条性质不难看出\, x^{T}I=\, (I\times I')^{T}I=0\, x^{T}I=\, (I\times I')^{T}I'=0,即满足说明中所述

结论2.3:过两点x和x’的直线是I=x\times x '

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值