路径规划算法之智能仿生学算法

文章介绍了几种基于生物行为的智能算法在处理复杂路径规划问题中的应用,包括蚁群算法的全局优化和并行性、神经网络算法的学习与鲁棒性以及遗传算法的生物进化思想和迭代优势。这些算法各有优缺点,如蚁群算法可能陷入局部最优,神经网络泛化能力不足,遗传算法效率不高等,但它们的改进和结合应用是当前研究的焦点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

处理复杂动态环境信息情况下的路径规划问题时,来自于自然界的启示往往能起到很好的作用。智能仿生学算法就是人们通过仿生学研究,发现的算法,常用到的有:蚁群算法、神经网络算法、粒子群算法、遗传算法等。

(1)蚁群算法,(Ant Colony Algorithm简称ACA)的思想来自于对蚁群觅食行为的探索,每个蚂蚁觅食时都会在走过的道路上留下一定浓度的信息素,相同时间内最短的路径上由于蚂蚁遍历的次数多而信息素浓度高,加上后来的蚂蚁在选择路径时会以信息素浓度为依据,起到正反馈作用,因此信息素浓度高的最短路径很快就会被发现。算法通过迭代来模拟蚁群觅食的行为达到目的。具有良好的全局优化能力、本质上的并行性、易于用计算机实现等优点,但计算量大、易陷入局部最优解,不过可通过加入精英蚁等方法改进。

(2)神经网络算法是人工智能领域中的一种非常优秀的算法,它主要模拟动物神经网络行为,进行分布式并行信息处理。但它在路径规划中的应用却并不成功,因为路径规划中复杂多变的环境很难用数学公式进行描述,如果用神经网络去预测学习样本分布空间以外的点,其效果必然是非常差。尽管神经网络具有优秀的学习能力,但是泛化能力差是其致命缺点。但因其学习能力强鲁棒性好,它与其他算法的结合应用已经成为路径规划领域研究的热点。

(3)遗传算法(Genetic Algorithms,简称GA)是当代人工智能科学的一个重要研究分支,是一种模拟达尔文遗传选择和自然淘汰的生物进化过程中的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是按照基因遗传学原理而实现的一种迭代过程的搜索算法。最大的优点是易于与其他算法相结合,并充分发挥自身迭代的优势,缺点是运算效率不高,不如蚁群算法有先天优势,但其改进算法也是研究的热点。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值