常见电路频域分析

前言:包括受控源、互感耦合器、桥式电路等,求系统函数,方法有但不限于结点电压法、回路电流法、常规方法等。

1、桥式电路:

其等效电路为:

思路:U_2(t)两端电压为a,b两点电势差,a,b两点所在线路并联即电压都为U_1(t)

解:U_a(s)=\frac{U_1(s)\cdot R}{R+\frac{1}{SC}}

U_b(s)=\frac{U_1(s)\cdot \frac{1}{SC}}{R+\frac{1}{SC}}

U_2(s)=U_a(s)-U_b(s)=\frac{U_1(s)\cdot (R-\frac{1}{SC})}{R+\frac{1}{SC}}

即系统函数H(s)=\frac{U_2(s)}{U_1(s)}=\frac{s-2}{s+2}

2、互感耦合电路:

 

思路:需要知道的前提条件U(s)=sMI_1,I_1即左边的电感流入电流。首先只考虑左边电路,采用结点电压法(导纳法)列出等式,(ps:不清楚的看我这章节信号与系统——s域之结点电压法_信号与系统求电压-CSDN博客

解:yw

(2+\frac{s}{2}+\frac{2}{s})U_1(s)=\frac{U_s(s)}{R}

\Rightarrow \frac{(s+2)^2U_1(s)}{2s}=2U_s(s)

\Rightarrow U_1(s)=\frac{4sU_s(s)}{(s+2)^2}

因为U(s)=sMI_1,得先求I_1而线路1和2并联

所以I_1=\frac{U_1(s)}{\frac{s}{2}}=\frac{2U_1(s)}{s}

\Rightarrow I_1=\tfrac{8U_s(s)}{(s+2)^2}

U(s)=sMI_1

\Rightarrow U(s)=\frac{4sU_s(s)}{(s+2)^2}

H(s)=\frac{U(s)}{U_s(s)}=\frac{4s}{(s+2)^2}

3常规电路:

常规电路图可以采取结点电压法、回路电流法或者微分方程法,以微分方程为例

前提知识:只针对电感有U_L(t)=L\frac{di_L(t)}{dt}而只针对电容有i_c(t)=C\frac{du_c(t)}{dt}

思路:采用电路电流相等,即R_1C_1电流和等于R_2C_2电流和

解:因为R_1C_1并联,所以电压都等于U_s(t)-U_2(t),而C_1端电流为C_1\frac{d[U_s(t)-U_2(t)]}{dt}

R_1端电流为\frac{U_s(t)-U_2(t)}{R_1}

R_2C_2并联,电压都为U_2(t),所以R_2端电流为\frac{U_2(t)}{R_2}C_2端电流为C\frac{dU_2(t)}{dt}

具体过程就不赘述

最后H(s)=\frac{6s+1}{12s+3}

4、带受控电压源电路

未完待续....... 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值