拉氏变换转化为傅里叶变换

说明:关于将象函数转为傅里叶变换,部分院校考研或期末考题会出现,但大部分辅导机构和网络资料枚举的例题对于这部分内容的阐述不全面,而杨晓非老师的《信号与系统(第二版》对这部分解析比较好,但有部分地方需要说明解释一下,故著以此章便于同学们理解。

1 傅里叶变换的存在性

首先需要考虑傅里叶的存在性,即收敛坐标的位置,若收敛边界在左半开面或虚轴上,则傅里叶变换存在,若在右半开面则不傅里叶变换不存在。

如下图所示:图(b),(c)的傅里叶变换存在

2 对于位于左半开面的象函数

1)若给出关于时间函数,将函数拉氏变换后,将s=j\omega即可

例2.1 指数衰减信号f(t)=e^{-at}\varepsilon (t)(a>0),其收敛边界位于左半开平面,所以

\Rightarrow F(j\omega)=F(s)|_{s=j\omega}=\frac{1}{s+a}=\frac{1}{j\omega+a}

3 对于位于虚轴上的象函数 

总体公式是:F(j\omega)=F_a(j\omega)+F_b(j\omega)

其中F_a(j\omega)就是将s=j\omega带入象函数中,而F_b(j\omega)需要分两种情况讨论

3.1 当F_b(s)j\omega上有N个单极点j\omega_k (k=1,2,3...,N)

F_b(j\omega)=\sum_{k=1}^{N}B_k\pi\delta(\omega-\omega_k)

例3.1 F(s)=\frac{s}{s^2+\omega_0^2}的傅里叶变换

解:\Rightarrow F(s)=\frac{s}{s^2-(j\omega_0)^2}

\Rightarrow F(s)=\frac{1}{2}\cdot \frac{1}{s-j\omega_0}+\frac{1}{2}\cdot \frac{1}{s+j\omega_0}

由此可见,F(s)存在两个单独的极点:j\omega_0,-j\omega_0均位于虚轴上

其中B_1=\frac{1}{2},B_2=\frac{1}{2},\omega_1=\omega_0,\omega_2=-\omega_0,带入公式为

F(j\omega)=\frac{j\omega}{\omega_0^2-\omega^2}+\frac{\pi}{2}\delta(\omega-\omega_0)+\frac{\pi}{2}\delta(\omega+\omega_0)

3.2 当F_b(s)j\omega上有重极点时

F_b(j\omega)=\sum \frac{B_{1i }\pi(j)^{i-1}\delta^{(i-1)}(\omega-\omega_0)}{(i-1)!}

例3.2 F(s)=\frac{1}{s^2(s+1)}的傅里叶变换

解:由部分分式展开法\Rightarrow \frac{B_{12}}{s^2}+\frac{B_{11}}{s}+\frac{B_2}{s+1}

\Rightarrow \frac{1}{s^2}+\frac{-1}{s}+\frac{1}{s+1}

\frac{1}{s+1}位于左半开面,所以直接带s=j\omega,而F_a(j\omega)本身也需要s=j\omega带入,所以相当于不用再带\frac{1}{s+1}部分的,而\frac{1}{s^2}+\frac{-1}{s}带入公式即可,其中\omega_0=0(值得注意的是i=2时不需要管下面的阶乘)

\Rightarrow F(j\omega)=\frac{1}{(j\omega)^2(j\omega+1)}+j\pi\delta'(\omega)-\pi\delta(\omega)

4 举一反三

求 F(s)=\frac{s}{(s^2+4)^2}的傅里叶变换


本题答案后续公布

  • 15
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值