拉氏变换定义及如何确定拉氏变换的收敛域

前言:有些信号是不满足绝对可积的条件,不可积也就不存在傅里叶变换,为满足信号的频域分析,引入一个衰减因子e^{-\sigma t}来满足绝对可积的条件。

我们都知道一个信号f(t)的傅里叶变换是F(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt,此时引入衰减因子e^{-\sigma t},并令f_1(t)=f(t)e^{-\sigma t},即有

F_1(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-\sigma t}e^{-j\omega t}dt,进一步化简有

F_1(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-(\sigma+j\omega)t}dt,再令s=\sigma+j\omega,若\sigma=0,则有

F(s)=\int_{-\infty}^{\infty}f(t)e^{st}dt(拉氏变换定义式)

\sigma叫变量s的实部,记作Re[s]s域也称复频域,在二维轴上横轴用Re[s]表示,纵轴用Im[s]表示。

那如何确定一个信号的收敛域,即\sigma的范围。

例1.1下面以信号f(t)=e^{at}\varepsilon (t)为例

其拉氏变换为:F(s)=\int_{0}^{\infty}e^{(a-s)t}dt

\Rightarrow \frac{1}{a-s}e^{(a-s)t}|_{0}^{\infty}

\Rightarrow F(s)=\frac{1}{s-a}

因为\sigma=s+j\omega,所以F(s)=\int_{0}^{\infty}e^{(a-\sigma)t}e^{-j\omega t}dt

而要想拉氏变换存在,必须满足(a-\sigma)>0,即收敛域\Rightarrow Re[s]=\sigma>a

同理可以求得f(t)=\delta(t)的收敛域为全域

例1.2

  • 9
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值