纯小白学习IOU,GIOU,DIOU,CIOU,EIOU,SIOU,WIOU历程,代码公式and实例运行

纯小白在进行yolov5改进时,纯看各iou的公式有点费解,结合代码以及实例来进行学习,因为实在实力不够,代码冗长重复,代码摘抄于YOLOv5官方7.0版本,并在其基础上添加了Alpha-IOUEIOUSIOUWIOU(后续添加)损失函数。

参考了博客:IOU系列:IOU、GIOU、DIOU、CIOU、SIOU、Alpha-IoU、WIOU详解-CSDN博客

一、GIOU:

附上GIOU公式:

GIOU=IOU-\frac{\left | C-\left ( A\cup B \right )\right |}{\left | C \right |}

代码如下,以box1和box2来作为实例来理解,直接放到jupyternotebook里跑就ok:

import numpy as np
import torch
import math

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, Focal=False, alpha=1, gamma=0.5, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)  #把坐标信息分成四个块,方便后续对每个坐标进行操作
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
        print(b1_x1)
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
    print('Intersection:', inter)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    print('Union:', union)

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    print('IoU:', iou)
    if CIoU or DIoU or GIoU or EIoU or SIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        c_area = cw * ch + eps  # convex area
        return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf

    return iou  # IoU

if __name__ == "__main__":
    # 将 NumPy 数组转换为 PyTorch 张量
    box1_tensor = torch.tensor([0, 0, 100, 100], dtype=torch.float32)
    box2_tensor = torch.tensor([50, 50, 150, 150], dtype=torch.float32)

    # 调用 bbox_iou 方法,计算 GIoU
    giou = bbox_iou(box1_tensor, box2_tensor,xywh=False, GIoU=True)

    # 输出 GIoU 的返回值
    print('GIoU: {:.4f}'.format(giou.item()))

跑出来结果如下,和自己手算结果相同:

Intersection: tensor([2500.])
Union: tensor([17500.])
IoU: tensor([0.1429])
GIoU: -0.0794

二、DIOU

附上DIOU公式:

DIOU=IOU-\frac{\rho ^{2}\left ( b,b^{gt} \right )}{c^{2}}

代码如下:

import numpy as np
import torch
import math

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, Focal=False, alpha=1, gamma=0.5, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)  #把坐标信息分成四个块,方便后续对每个坐标进行操作
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
        print(b1_x1)
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
    print('Intersection:', inter)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    print('Union:', union)

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    print('IoU:', iou)
    if CIoU or DIoU or GIoU or EIoU or SIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width;150
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height;150
        if CIoU or DIoU or EIoU or SIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared;45000
            print('c2:',c2)
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2;5000
            print('rho2:',rho2)
        return iou - rho2 / c2  # DIoU

    return iou  # IoU

if __name__ == "__main__":
    # 将 NumPy 数组转换为 PyTorch 张量
    box1_tensor = torch.tensor([0, 0, 100, 100], dtype=torch.float32)
    box2_tensor = torch.tensor([50, 50, 150, 150], dtype=torch.float32)

    # 调用 bbox_iou 方法,计算 DIoU
    diou = bbox_iou(box1_tensor, box2_tensor,xywh=False, DIoU=True)

    # 输出 DIoU 的返回值
    print('DIoU: {:.4f}'.format(diou.item()))

跑出来结果如下:

Intersection: tensor([2500.])
Union: tensor([17500.])
IoU: tensor([0.1429])
c2: tensor([45000.])
rho2: tensor([5000.])
DIoU: 0.0317

三、CIOU

CIOU在DIOU的基础上添加了长宽比的惩罚项,附上CIOU公式:

CIOU=GIOU-\alpha \nu

\alpha =\frac{\nu }{\left ( 1-IOU \right )+\nu }

\nu =\frac{4}{\pi ^{2}}\left ( \arctan \frac{\omega ^{gt}}{h^{gt}} -\arctan \frac{​{\omega }}{h}\right )^{2}

附上代码:

import numpy as np
import torch
import math

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, Focal=False, alpha=1, gamma=0.5, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)  #把坐标信息分成四个块,方便后续对每个坐标进行操作
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
        print(b1_x1)
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
    print('Intersection:', inter)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    print('Union:', union)

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    print('IoU:', iou)
    if CIoU or DIoU or GIoU or EIoU or SIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width;150
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height;150
        if CIoU or DIoU or EIoU or SIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            print('c2:',c2)
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            print('rho2:',rho2)
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)   
                print('v:',v)
                with torch.no_grad(): #用于在其范围内禁用梯度计算,alpha_ciou与后续的梯度计算无关
                    alpha_ciou = v / (v - iou + (1 + eps))
                    print('alpha_ciou:',alpha_ciou)
            return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
    return iou  # IoU

if __name__ == "__main__":
    # 将 NumPy 数组转换为 PyTorch 张量
    box1_tensor = torch.tensor([0, 0, 100, 100], dtype=torch.float32)
    box2_tensor = torch.tensor([50, 50, 150, 150], dtype=torch.float32)

    # 调用 bbox_iou 方法,计算 CIoU
    ciou = bbox_iou(box1_tensor, box2_tensor,xywh=False, CIoU=True)

    # 输出 CIoU 的返回值
    print('CIoU: {:.4f}'.format(ciou.item()))

跑出来结果如下:

Intersection: tensor([2500.])
Union: tensor([17500.])
IoU: tensor([0.1429])
c2: tensor([45000.])
rho2: tensor([5000.])
v: tensor([0.])
alpha_ciou: tensor([0.])
CIoU: 0.0317

四、EIOU

EIOU在CIOU的基础上将纵横比的影响拆开,分别计算长和宽各自的影响因子,并且加入了Focal来聚焦优质锚框,附上EIOU的公式:

L_{EIOU}=L_{IOU}-L_{dis}-L_{asp} =1-IOU+\frac{\rho ^{2}\left ( b,b ^{gt} \right )}{c^{2}}+\frac{\rho ^{2}\left ( \omega ,\omega ^{gt} \right )}{c_{\omega }^{2}}+\frac{\rho ^{2}\left ( h,h ^{gt} \right )}{c_{h }^{2}}

附上Focal-EIOU的公式:

L_{Focal-EIOU}=IOU^{\gamma }\times L_{EIOU}

代码上因为原先的示例框长宽都一样,所以将box2变成150的正方形:

import numpy as np
import torch
import math

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, Focal=False, alpha=1, gamma=0.5, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)  #把坐标信息分成四个块,方便后续对每个坐标进行操作
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
        print(b1_x1)
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
    print('Intersection:', inter)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    print('Union:', union)

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    print('IoU:', iou)
    if CIoU or DIoU or GIoU or EIoU or SIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width;200
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height;200
        if CIoU or DIoU or EIoU or SIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            print('c2:',c2)
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            print('rho2:',rho2)
            if  EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                print('rho_w2',rho_w2)
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                print('rho_h2',rho_h2)
                cw2 = torch.pow(cw ** 2 + eps, alpha) #torch.pow是对cw**2进行alpha次方操作
                print('cw2',cw2)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou;gamma是对IoU进行gamma次方操作
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIoU
    return iou

if __name__ == "__main__":
    # 将 NumPy 数组转换为 PyTorch 张量
    box1_tensor = torch.tensor([0, 0, 100, 100], dtype=torch.float32)
    box2_tensor = torch.tensor([50, 50, 200, 200], dtype=torch.float32)

    # 调用 bbox_iou 方法,计算 EIoU
    eiou,focal_iou= bbox_iou(box1_tensor, box2_tensor,xywh=False, EIoU=True,Focal=True,gamma=0.5)

    # 输出 EIoU 的返回值
    print('EIou Loss: {:.4f}'.format(eiou.item()))
    print('Focal IoU: {:.4f}'.format(focal_iou.item()))

输出结果为,目前有点不懂Focal IoU的输出,输出数值计算不太对,但是EIOU是对的:

Intersection: tensor([2500.])
Union: tensor([30000.])
IoU: tensor([0.0833])
c2: tensor([80000.])
rho2: tensor([11250.])
rho_w2 tensor([2500.])
rho_h2 tensor([2500.])
cw2 tensor([40000.])
EIou Loss: -0.1823
Focal IoU: 0.2887

五、SIOU

SIOU包涵4项损失函数,分别是Angle cost、Distance cost、Shape cost和IOU cost,具体参考博客:

L_{angle}=\cos \left ( 2\alpha -\pi \div 2 \right )

\rho _{x}=\left ( \frac{b_{gt}^{cx}-b_{cx}}{c_{w}} \right )^{2}\rho _{y}=\left ( \frac{b_{gt}^{cy}-b_{cy}}{c_{h}} \right )^{2}

\gamma =L_{angle}-2

L_{dis}=2-e^{\gamma \\\rho _{x} }-e^{\gamma \\\rho _{y} }

\omega _{w}=\frac{\left | \omega -\omega ^{gt} \right |}{\max \left ( \omega ,\omega ^{gt} \right )}

\omega _{h}=\frac{\left | h -h ^{gt} \right |}{\max \left ( h ,h ^{gt} \right )}

L_{shape}=\left ( 1-e^{w_{w}} \right )^{^{4}}+\left ( 1-e^{w_{h}} \right )^{^{4}}

L_{SIOU}=IOU-0.5\times \left ( L_{dis}+L_{shape} \right )

附上SIOU代码:

import numpy as np
import torch
import math

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, Focal=False, alpha=1, gamma=0.5, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)  #把坐标信息分成四个块,方便后续对每个坐标进行操作
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
        print(b1_x1)
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
    print('Intersection:', inter)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    print('Union:', union)

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    print('IoU:', iou)
    if CIoU or DIoU or GIoU or EIoU or SIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width;200
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height;200
        if CIoU or DIoU or EIoU or SIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            print('c2:',c2)
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            print('rho2:',rho2)
            if SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps  
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2  #计算阈值2分之根号2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1) #如果 sin_alpha_1 中的元素大于 threshold,则选取 sin_alpha_2 中对应位置的元素,否则选取 sin_alpha_1 中的元素
                print('sin_alpha',sin_alpha) #alpha是45度
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)  #参考博客angle loss的损失函数cos(2alpha-pi/2)
                print('angle_cost',angle_cost) 
                rho_x = (s_cw / cw) ** 2   #(75/200)**2
                rho_y = (s_ch / ch) ** 2   #(75/200)**2
                gamma = angle_cost - 2     #-1
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                print('distance_cost',distance_cost)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)   
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                print('shape_cost',shape_cost)
                return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
        return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf

    return iou  # IoU

if __name__ == "__main__":
    # 将 NumPy 数组转换为 PyTorch 张量
    box1_tensor = torch.tensor([0, 0, 100, 100], dtype=torch.float32)
    box2_tensor = torch.tensor([50, 50, 200, 200], dtype=torch.float32)

    # 调用 bbox_iou 方法,计算 SIoU
    siou = bbox_iou(box1_tensor, box2_tensor,xywh=False, SIoU=True)

    # 输出 SIoU 的返回值
    print('SIoU: {:.4f}'.format(siou.item()))

运行结果如下:

Intersection: tensor([2500.])
Union: tensor([30000.])
IoU: tensor([0.0833])
c2: tensor([80000.])
rho2: tensor([11250.])
sin_alpha tensor([0.7071])
angle_cost tensor([1.])
distance_cost tensor([0.2624])
shape_cost tensor([0.0129])
SIoU: -0.0543

六、WIOU

WIOU分为v1,v2和v3,

如果WIOU=True,scale=False,则执行WIOU v1的计算;

如果WIOU=True,scale=True,monotonous=True,则执行WIOU v2;

如果WIOU=True,scale=True,monotonous=False,则执行WIOU v3。

附上WIOU公式:

v1:L_{WIOU v1}=e^{\frac{\rho ^{2}\left ( b,b ^{gt} \right )}{c^{2}}}

v2:L_{WIOU v2}=\left ( \frac{IOU_{detach}}{IOU_{mean}} \right )^{0.5}

v3:L_{WIOU v3}=\beta \div \alpha

\beta =\frac{IOU_{detach}}{IOU_{mean}}

\alpha =\beta \times \gamma ^{\beta -\Delta }\gamma\Delta都是超参数)

附上WIOU v2的代码:

#WIOU v2
import numpy as np
import torch
import math

class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
        momentum: The momentum of running mean'''

    iou_mean = 1.
    monotonous = True
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)

    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()

    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                print('self.iou.detach() / self.iou_mean).sqrt():',(self.iou.detach() / self.iou_mean).sqrt())
                print('self.iou.detach() :',self.iou.detach()) #返回了1-iou
                print('self.iou_mean :',self.iou_mean)
                return (self.iou.detach() / self.iou_mean).sqrt() #.detach() 方法会返回一个新的张量,该张量不再与后续计算相关;计算iou与iou均值之比的平方根
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1


def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    if scale:
        self = WIoU_Scale(1 - (inter / union))

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if WIoU:
                if Focal:
                    raise RuntimeError("WIoU do not support Focal.")
                elif scale:
                    return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
                else:
                    return iou, torch.exp((rho2 / c2)) # WIoU v1
    else:
        return iou  # IoU
    
if __name__ == "__main__":
    # 将 NumPy 数组转换为 PyTorch 张量
    box1_tensor = torch.tensor([0, 0, 100, 100], dtype=torch.float32)
    box2_tensor = torch.tensor([50, 50, 200, 200], dtype=torch.float32)

    # 调用 bbox_iou 方法,计算 WIoU
    wiou = bbox_iou(box1_tensor, box2_tensor,xywh=False,WIoU=True,scale=True)

    # 输出 WIoU 的返回值
    print('WIoU: {:.4f}'.format(wiou[0].item()))

运行结果如下:

self.iou.detach() / self.iou_mean).sqrt(): tensor([0.9574])
self.iou.detach() : tensor([0.9167])
self.iou_mean : 0.9999917486583527
WIoU: 0.9574

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值