【Leetcode】Q2. 最小化连通分量的最大成本

题目

题目链接🔗

给你一个无向连通图,包含 n 个节点,节点编号从 0 到 n - 1,以及一个二维整数数组 edges,其中 edges[i] = [ui, vi, wi] 表示一条连接节点 ui 和节点 vi 的无向边,边权为 wi,另有一个整数 k。

你可以从图中移除任意数量的边,使得最终的图中最多只包含 k 个连通分量。

连通分量的成本定义为该分量中边权的最大值。如果一个连通分量没有边,则其代价为 0。

请返回在移除这些边之后,在所有连通分量之中的最大成本最小可能值

示例 1:

  • 输入:n = 5, edges = [[0,1,4],[1,2,3],[1,3,2],[3,4,6]], k = 2
  • 输出:4

示例 2:

  • 输入:n = 4, edges = [[0,1,5],[1,2,5],[2,3,5]], k = 1
  • 输出:5

思路

这是一道经典的二分搜索 + 并查集问题。

核心思路:

  1. 二分搜索答案:我们要找的是"最大成本的最小可能值",这提示我们可以二分搜索这个答案
  2. 判断可行性:对于每个候选答案 mid,判断是否能通过只使用权重 ≤ mid 的边来形成至多 k 个连通分量
  3. 并查集合并:使用并查集来统计连通分量的数量

算法步骤:

  1. 二分搜索的范围:left = 0right = max(所有边权)
  2. 对于每个 mid
    • 只考虑权重 ≤ mid 的边
    • 使用并查集合并这些边连接的节点
    • 统计最终的连通分量数量
    • 如果连通分量数量 ≤ k,说明答案可能更小
    • 否则,答案需要更大

关键洞察:

  • 我们希望连通分量尽可能少(≤ k),所以应该尽可能多地保留边
  • 但同时希望每个连通分量的最大边权尽可能小
  • 通过二分搜索找到平衡点

代码

C++

class Solution {
public:
    int minCost(int n, vector<vector<int>>& edges, int k) {
        int left = 0, right = 0;
        // 找到所有边权的最大值作为搜索上界
        for (auto& edge : edges) {
            right = max(right, edge[2]);
        }
        
        // 二分搜索答案
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (canFormKComponents(n, edges, k, mid)) {
                right = mid;  // 可以形成≤k个连通分量,尝试更小的答案
            } else {
                left = mid + 1;  // 不能形成≤k个连通分量,需要更大的答案
            }
        }
        
        return left;
    }
    
private:
    bool canFormKComponents(int n, vector<vector<int>>& edges, int k, int maxCost) {
        // 初始化并查集
        vector<int> parent(n);
        iota(parent.begin(), parent.end(), 0);
        
        function<int(int)> find = [&](int x) {
            return parent[x] == x ? x : parent[x] = find(parent[x]);
        };
        
        int components = n;  // 初始有n个连通分量
        
        // 只考虑权重≤maxCost的边
        for (auto& edge : edges) {
            if (edge[2] <= maxCost) {
                int u = find(edge[0]);
                int v = find(edge[1]);
                if (u != v) {
                    parent[u] = v;
                    components--;  // 合并两个连通分量
                }
            }
        }
        
        return components <= k;
    }
};

Java

class Solution {
    public int minCost(int n, int[][] edges, int k) {
        int left = 0, right = 0;
        for (int[] edge : edges) {
            right = Math.max(right, edge[2]);
        }
        
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (canFormKComponents(n, edges, k, mid)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        
        return left;
    }
    
    private boolean canFormKComponents(int n, int[][] edges, int k, int maxCost) {
        int[] parent = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
        
        int components = n;
        for (int[] edge : edges) {
            if (edge[2] <= maxCost) {
                int u = find(parent, edge[0]);
                int v = find(parent, edge[1]);
                if (u != v) {
                    parent[u] = v;
                    components--;
                }
            }
        }
        
        return components <= k;
    }
    
    private int find(int[] parent, int x) {
        if (parent[x] != x) {
            parent[x] = find(parent, parent[x]);
        }
        return parent[x];
    }
}

Python

class Solution:
    def minCost(self, n: int, edges: List[List[int]], k: int) -> int:
        left, right = 0, max(edge[2] for edge in edges)
        
        while left < right:
            mid = (left + right) // 2
            if self.canFormKComponents(n, edges, k, mid):
                right = mid
            else:
                left = mid + 1
        
        return left
    
    def canFormKComponents(self, n: int, edges: List[List[int]], k: int, maxCost: int) -> bool:
        parent = list(range(n))
        
        def find(x):
            if parent[x] != x:
                parent[x] = find(parent[x])
            return parent[x]
        
        components = n
        for u, v, w in edges:
            if w <= maxCost:
                pu, pv = find(u), find(v)
                if pu != pv:
                    parent[pu] = pv
                    components -= 1
        
        return components <= k

复杂度分析

时间复杂度

O(E × log(max_weight) × α(n)),其中:

  • E 是边的数量
  • max_weight 是所有边权的最大值
  • α(n) 是阿克曼函数的反函数(并查集的时间复杂度)
  • 二分搜索需要 O(log(max_weight)) 次
  • 每次判断需要 O(E × α(n)) 时间

空间复杂度

O(n),用于存储并查集的 parent 数组。

结果

  • 通过所有测试用例
  • 执行用时:较快
  • 内存消耗:较少

总结

这道题是一道经典的图论 + 二分搜索问题,考查的是:

  1. 二分搜索:识别"最小化最大值"的问题模式
  2. 并查集:高效地统计连通分量数量
  3. 贪心思想:在满足连通分量数量限制的前提下,尽可能使用小权重的边

解题要点:

  • 理解题目要求:我们要最小化"所有连通分量中成本的最大值"
  • 二分搜索的对象是答案(最大成本),而不是边的索引
  • 判断函数的核心是:给定最大成本限制,能否形成至多k个连通分量
  • 并查集的路径压缩优化很重要

类似题目:

  • 最小生成树相关问题
  • 其他"最小化最大值"的二分搜索问题

这道题很好地结合了图论和二分搜索,是一道很有价值的练习题。

### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想要AC的dly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值