22_布隆过滤器

##理论讲解
在这里插入图片描述

##代码实现

#include <iostream>
#include <vector>
#include "stringhash.h"
#include <string>
using namespace std;

// 布隆过滤器实现
class BloomFilter
{
public:
    BloomFilter(int bitSize = 1471)
        : bitSize_(bitSize)
    {
        bitMap_.resize(bitSize_ / 32 + 1);
    }

public:
    // 添加元素 O(1)
    void setBit(const char* str)
    {
        // 计算k组哈希函数的值
        int idx1 = BKDRHash(str) % bitSize_;
        int idx2 = RSHash(str) % bitSize_;
        int idx3 = APHash(str) % bitSize_;

        // 把相应的idx1 idx2 idx3这几个位全部置1
        int index = 0;
        int offset = 0;

        index = idx1 / 32;
        offset = idx1 % 32;
        bitMap_[index] |= (1 << offset);

        index = idx2 / 32;
        offset = idx2 % 32;
        bitMap_[index] |= (1 << offset);

        index = idx3 / 32;
        offset = idx3 % 32;
        bitMap_[index] |= (1 << offset);
    }

    // 查询元素 O(1)
    bool getBit(const char* str)
    {
        // 计算k组哈希函数的值
        int idx1 = BKDRHash(str) % bitSize_;
        int idx2 = RSHash(str) % bitSize_;
        int idx3 = APHash(str) % bitSize_;

        int index = 0;
        int offset = 0;

        index = idx1 / 32;
        offset = idx1 % 32;
        if (0 == (bitMap_[index] & (1 << offset)))
        {
            return false;
        }

        index = idx2 / 32;
        offset = idx2 % 32;
        if (0 == (bitMap_[index] & (1 << offset)))
        {
            return false;
        }

        index = idx3 / 32;
        offset = idx3 % 32;
        if (0 == (bitMap_[index] & (1 << offset)))
        {
            return false;
        }

        return true;
    }

private:
    int bitSize_;   // 位图的长度
    vector<int> bitMap_; // 位图数组
};

// URL黑名单
class BlackList
{
public:
    void add(string url)
    {
        blockList_.setBit(url.c_str());
    }
    bool query(string url)
    {
        return blockList_.getBit(url.c_str());
    }
private:
    BloomFilter blockList_;
};

int main()
{
    BlackList list;
    list.add("http://www.baidu.com");
    list.add("http://www.360buy.com");
    list.add("http://www.tmall.com");
    list.add("http://www.tencent.com");

    string url = "http://www.alibaba.com";
    cout << list.query(url) << endl;
}
#pragma once


/// @brief BKDR Hash Function  
/// @detail 本 算法由于在Brian Kernighan与Dennis Ritchie的《The C Programming Language》一书被展示而得 名,是一种简单快捷的hash算法,也是Java目前采用的字符串的Hash算法(累乘因子为31)。  
template<class T>
size_t BKDRHash(const T* str)
{
    register size_t hash = 0;
    while (size_t ch = (size_t)*str++)
    {
        hash = hash * 131 + ch;   // 也可以乘以31、131、1313、13131、131313..  
        // 有人说将乘法分解为位运算及加减法可以提高效率,如将上式表达为:hash = hash << 7 + hash << 1 + hash + ch;  
        // 但其实在Intel平台上,CPU内部对二者的处理效率都是差不多的,  
        // 我分别进行了100亿次的上述两种运算,发现二者时间差距基本为0(如果是Debug版,分解成位运算后的耗时还要高1/3);  
        // 在ARM这类RISC系统上没有测试过,由于ARM内部使用Booth's Algorithm来模拟32位整数乘法运算,它的效率与乘数有关:  
        // 当乘数8-31位都为1或0时,需要1个时钟周期  
        // 当乘数16-31位都为1或0时,需要2个时钟周期  
        // 当乘数24-31位都为1或0时,需要3个时钟周期  
        // 否则,需要4个时钟周期  
        // 因此,虽然我没有实际测试,但是我依然认为二者效率上差别不大          
    }
    return hash;
}
/// @brief SDBM Hash Function  
/// @detail 本算法是由于在开源项目SDBM(一种简单的数据库引擎)中被应用而得名,它与BKDRHash思想一致,只是种子不同而已。  
template<class T>
size_t SDBMHash(const T* str)
{
    register size_t hash = 0;
    while (size_t ch = (size_t)*str++)
    {
        hash = 65599 * hash + ch;
        //hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;  
    }
    return hash;
}
/// @brief RS Hash Function  
/// @detail 因Robert Sedgwicks在其《Algorithms in C》一书中展示而得名。  
template<class T>
size_t RSHash(const T* str)
{
    register size_t hash = 0;
    size_t magic = 63689;
    while (size_t ch = (size_t)*str++)
    {
        hash = hash * magic + ch;
        magic *= 378551;
    }
    return hash;
}
/// @brief AP Hash Function  
/// @detail 由Arash Partow发明的一种hash算法。  
template<class T>
size_t APHash(const T* str)
{
    register size_t hash = 0;
    size_t ch;
    for (long i = 0; ch = (size_t)*str++; i++)
    {
        if ((i & 1) == 0)
        {
            hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
        }
        else
        {
            hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
        }
    }
    return hash;
}
/// @brief JS Hash Function  
/// 由Justin Sobel发明的一种hash算法。  
template<class T>
size_t JSHash(const T* str)
{
    if (!*str)        // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;
    register size_t hash = 1315423911;
    while (size_t ch = (size_t)*str++)
    {
        hash ^= ((hash << 5) + ch + (hash >> 2));
    }
    return hash;
}
/// @brief DEK Function  
/// @detail 本算法是由于Donald E. Knuth在《Art Of Computer Programming Volume 3》中展示而得名。  
template<class T>
size_t DEKHash(const T* str)
{
    if (!*str)        // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;
    register size_t hash = 1315423911;
    while (size_t ch = (size_t)*str++)
    {
        hash = ((hash << 5) ^ (hash >> 27)) ^ ch;
    }
    return hash;
}
/// @brief FNV Hash Function  
/// @detail Unix system系统中使用的一种著名hash算法,后来微软也在其hash_map中实现。  
template<class T>
size_t FNVHash(const T* str)
{
    if (!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;
    register size_t hash = 2166136261;
    while (size_t ch = (size_t)*str++)
    {
        hash *= 16777619;
        hash ^= ch;
    }
    return hash;
}
/// @brief DJB Hash Function  
/// @detail 由Daniel J. Bernstein教授发明的一种hash算法。  
template<class T>
size_t DJBHash(const T* str)
{
    if (!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;
    register size_t hash = 5381;
    while (size_t ch = (size_t)*str++)
    {
        hash += (hash << 5) + ch;
    }
    return hash;
}
/// @brief DJB Hash Function 2  
/// @detail 由Daniel J. Bernstein 发明的另一种hash算法。  
template<class T>
size_t DJB2Hash(const T* str)
{
    if (!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;
    register size_t hash = 5381;
    while (size_t ch = (size_t)*str++)
    {
        hash = hash * 33 ^ ch;
    }
    return hash;
}
/// @brief PJW Hash Function  
/// @detail 本算法是基于AT&T贝尔实验室的Peter J. Weinberger的论文而发明的一种hash算法。  
template<class T>
size_t PJWHash(const T* str)
{
    static const size_t TotalBits = sizeof(size_t) * 8;
    static const size_t ThreeQuarters = (TotalBits * 3) / 4;
    static const size_t OneEighth = TotalBits / 8;
    static const size_t HighBits = ((size_t)-1) << (TotalBits - OneEighth);

    register size_t hash = 0;
    size_t magic = 0;
    while (size_t ch = (size_t)*str++)
    {
        hash = (hash << OneEighth) + ch;
        if ((magic = hash & HighBits) != 0)
        {
            hash = ((hash ^ (magic >> ThreeQuarters)) & (~HighBits));
        }
    }
    return hash;
}
/// @brief ELF Hash Function  
/// @detail 由于在Unix的Extended Library Function被附带而得名的一种hash算法,它其实就是PJW Hash的变形。  
template<class T>
size_t ELFHash(const T* str)
{
    static const size_t TotalBits = sizeof(size_t) * 8;
    static const size_t ThreeQuarters = (TotalBits * 3) / 4;
    static const size_t OneEighth = TotalBits / 8;
    static const size_t HighBits = ((size_t)-1) << (TotalBits - OneEighth);
    register size_t hash = 0;
    size_t magic = 0;
    while (size_t ch = (size_t)*str++)
    {
        hash = (hash << OneEighth) + ch;
        if ((magic = hash & HighBits) != 0)
        {
            hash ^= (magic >> ThreeQuarters);
            hash &= ~magic;
        }
    }
    return hash;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值