力扣 877. 石子游戏

Alice 和 Bob 用几堆石子在做游戏。一共有偶数堆石子,排成一行;每堆都有 正 整数颗石子,数目为 piles[i] 。

游戏以谁手中的石子最多来决出胜负。石子的 总数 是 奇数 ,所以没有平局。

Alice 和 Bob 轮流进行,Alice 先开始 。 每回合,玩家从行的 开始 或 结束 处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中 石子最多 的玩家 获胜 。

假设 Alice 和 Bob 都发挥出最佳水平,当 Alice 赢得比赛时返回 true ,当 Bob 赢得比赛时返回 false 。
示例 1:

输入:piles = [5,3,4,5]
输出:true
解释:
Alice 先开始,只能拿前 5 颗或后 5 颗石子 。
假设他取了前 5颗,这一行就变成了 [3,4,5] 。
如果 Bob 拿走前 3 颗,那么剩下的是 [4,5],Alice 拿走后 5 颗赢得 10 分。
如果 Bob 拿走后 5 颗,那么剩下的是 [3,4],Alice 拿走后 4 颗赢得 9 分。 这表明,取前 5 颗石子对 Alice
来说是一个胜利的举动,所以返回 true 。

示例 2:

输入:piles = [3,7,2,3]
输出:true

解:
事实上,这还是一道很经典的博弈论问题,也是最简单的一类博弈论问题。
由于石子的堆数为偶数,且只能从两端取石子。因此先手后手所能选择的石子序列,完全取决于先手每一次决定。

证明如下:

由于石子的堆数为偶数,对于先手而言:每一次的决策,都能「自由地」选择奇数还是偶数,从而限制后手下一次「只能」奇数还是偶数石子。
具体的,对于本题,由于石子堆数为偶数,因此先手的最开始局面必然是 [奇数, 偶数][奇数,偶数],即必然是「奇偶性不同的局面」;当先手决策完之后,交到给后手的要么是 [奇数,奇数][奇数,奇数] 或者 [偶数,偶数][偶数,偶数],即必然是「奇偶性相同的局面」;后手决策完后,又恢复「奇偶性不同的局面」交回到先手 …
不难归纳推理,这个边界是可以应用到每一个回合。
因此先手只需要在进行第一次操作前计算原序列中「奇数总和」和「偶数总和」哪个大,然后每一次决策都「限制」对方只能选择「最优奇偶性序列」的对立面即可。
同时又由于所有石子总和为奇数,堆数为偶数,即没有平局,所以先手必胜。

class Solution {
    public boolean stoneGame(int[] piles) {
        return true;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值