1、安装spark
默认完成JDK和Hadoop这二者的安装,如果没有的话请参考我前面的文章。
Spark部署模式主要有四种:Local模式(单机模式)、Standalone模式(使用Spark自带的简单集群管理器)、YARN模式(使用YARN作为集群管理器)和Mesos模式(使用Mesos作为集群管理器)。
这里介绍Local模式(单机模式)的 Spark安装。我们选择Spark 2.1.0版本,并且假设当前使用用户名hadoop登录了Linux操作系统。
sudo tar -zxf ~/下载/spark-2.1.0-bin-without-hadoop.tgz -C /usr/local/
cd /usr/local
sudo mv ./spark-2.1.0-bin-without-hadoop/ ./spark
sudo chown -R hadoop:hadoop ./spark 此处的 hadoop 为你的用户名
安装后,还需要修改Spark的配置文件spark-env.sh
cd /usr/local/spark
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
编辑spark-env.sh文件(vim ./conf/spark-env.sh),在第一行添加以下配置信息:
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)
有了上面的配置信息以后,Spark就可以把数据存储到Hadoop分布式文件系统HDFS中,也可以从HDFS中读取数据。如果没有配置上面信息,Spark就只能读写本地数据,无法读写HDFS数据。
配置完成后就可以直接使用,不需要像Hadoop运行启动命令。
通过运行Spark自带的示例,验证Spark是否安装成功。
cd /usr/local/spark
bin/run-example SparkPi
执行时会输出非常多的运行信息,输出结果不容易找到,可以通过 grep 命令进行过滤(命令中的 2>&1 可以将所有的信息都输出到 stdout 中,否则由于输出日志的性质,还是会输出到屏幕中):
bin/run-example SparkPi 2>&1 | grep “Pi is”
这里涉及到Linux Shell中管道的知识,详情可以参考Linux Shell中的管道命令
过滤后的运行结果如下图示,可以得到π 的 5 位小数近似值:
2、在 Spark Shell 中运行代码
前面已经安装了Hadoop和Spark,如果Spark不使用HDFS和YARN,那么就不用启动Hadoop也可以正常使用Spark。如果在使用Spark的过程中需要用到 HDFS,就要首先启动 Hadoop(启动Hadoop的方法可以参考上面给出的Hadoop安装教程)。
这里假设不需要用到HDFS,因此,就没有启动Hadoop。这里我们采用“本地模式”(local)运行Spark,所以我们直接开始使用Spark。
首先通过使用命令进入spark-shell环境,可以通过下面命令启动spark-shell环境:
bin/spark-shell
该命令省略了参数,这时,系统默认是“bin/spark-shell --master local[*]”,也就是说,是采用本地模式运行,并且使用本地所有的CPU核心。
比如,要采用本地模式,在4个CPU核心上运行spark-shell:
cd /usr/local/spark
./bin/spark-shell --master local[4]
启动spark-shell后,就会进入“scala>”命令提示符状态,如下图所示:
现在,你就可以在里面输入scala代码进行调试了。
比如,下面在命令提示符后面输入一个表达式“8 * 2 + 5”,然后回车,就会立即得到结果:
scala 8*2+5
res0: Int = 21
最后,可以使用命令“:quit”退出Spark Shell,如下所示:
scala:quit
或者,也可以直接使用“Ctrl+D”组合键,退出Spark Shell。
被提示文件系统磁盘空间不足,解决方案
3、编写Scala应用程序
在终端中执行如下命令创建一个文件夹 sparkapp 作为应用程序根目录:
cd ~ 进入用户主文件夹
mkdir ./sparkapp 创建应用程序根目录
mkdir -p ./sparkapp/src/main/scala 创建所需的文件夹结构
在 ./sparkapp/src/main/scala 下建立一个名为 SimpleApp.scala 的文件(vim ./sparkapp/src/main/scala/SimpleApp.scala),添加代码如下(目前不需要理解代码的具体含义,只需要理解如何编译运行代码就可以):
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = "file:///usr/local/spark/README.md" // Should be some file on your system
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
该程序计算 /usr/local/spark/README 文件中包含 “a” 的行数 和包含 “b” 的行数。代码第8行的 /usr/local/spark 为 Spark 的安装目录,如果不是该目录请自行修改。不同于 Spark shell,独立应用程序需要通过 val sc = new SparkContext(conf) 初始化 SparkContext,SparkContext 的参数 SparkConf 包含了应用程序的信息。
3.使用sbt打包Scala程序
如果报错可参考我的下一篇文章安装sbt
该程序依赖 Spark API,因此我们需要通过 sbt 进行编译打包。 请在./sparkapp 中新建文件 simple.sbt(vim ./sparkapp/simple.sbt),添加内容如下,声明该独立应用程序的信息以及与 Spark 的依赖关系:
name := "Simple Project"
version := "1.0"
scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0"
文件 simple.sbt 需要指明 Spark 和 Scala 的版本。在上面的配置信息中,scalaVersion用来指定scala的版本,sparkcore用来指定spark的版本,这两个版本信息都可以在之前的启动 Spark shell 的过程中,从屏幕的显示信息中找到。下面就是笔者在启动过程当中,看到的相关版本信息(备注:屏幕显示信息会很长,需要往回滚动屏幕仔细寻找信息)。
为保证 sbt 能正常运行,先执行如下命令检查整个应用程序的文件结构:
cd ~/sparkapp
find .
文件结构应如下图所示:
接着,我们就可以通过如下代码将整个应用程序打包成 JAR(首次运行同样需要下载依赖包 ):
/usr/local/sbt/sbt package
对于刚安装好的Spark和sbt而言,第一次运行上面的打包命令时,会需要几分钟的运行时间,因为系统会自动从网络上下载各种文件。后面再次运行上面命令,就会很快,因为不再需要下载相关文件。
打包成功的话,会输出如下内容:
生成的 jar 包的位置为 ~/sparkapp/target/scala-2.11/simple-project_2.11-1.0.jar。
4.通过 spark-submit 运行程序
最后,我们就可以将生成的 jar 包通过 spark-submit 提交到 Spark 中运行了,命令如下:
/usr/local/spark/bin/spark-submit --class "SimpleApp" ~/sparkapp/target/scala-2.11/simple-project_2.11-1.0.jar
#上面命令执行后会输出太多信息,可以不使用上面命令,而使用下面命令查看想要的结果
/usr/local/spark/bin/spark-submit --class "SimpleApp" ~/sparkapp/target/scala-2.11/simple-project_2.11-1.0.jar 2>&1 | grep "Lines with a:"
bin/spark-submit --class "TopN" ~/TopN/target/scala-2.11/simple-project_2.11-1.0.jar
最终得到的结果如下:
自此,你就完成了你的第一个 Spark 应用程序了。恭喜!!!
4.启动和关闭spark命令
1.启动
连接到本地服务器
ssh localhost
进入 Hadoop 目录并启动 Hadoop 服务
cd /usr/local/hadoop
sbin/start-dfs.sh
(sbin/start-yarn.sh)
#检查 Hadoop 服务状态
jps
进入 Spark 目录并启动 Spark Shell
cd /usr/local/spark
bin/spark-shell
2.关闭
退出 Spark Shell
:quit
进入 Hadoop 目录并停止 Hadoop 服务
cd /usr/local/hadoop
(sbin/stop-yarn.sh)
sbin/stop-dfs.sh
检查 Hadoop 服务状态
jps