python学习
文章平均质量分 72
Unicornlyy
记录个人成长~一个人或许走的很快但一群人走的更远一起努力吧!
展开
-
词云图生成自定义背景
词云文件目录结构----main.py python源代码----stop.txt 过滤掉的词语----simhei.ttf 字体格式文件----text.txt 要生成词云图的txt文件----001.png 背景图Stop文件(过滤词将不想展示的词(文字,符号等都可以)放进去,一行添加一个)或者在Python文件stop这里添加字体:可以在网上下载也可以复制本地的(从C\windows\Fonts里找喜欢的)Text:你的文本文件展示的单词数:如只想展示最多出现的前二十个词。原创 2024-03-11 00:01:38 · 675 阅读 · 0 评论 -
leedcode刷题笔记day1
它的逻辑就是首先让6这个key以及对应的下标value存入哈希表,然后接下来的一个元素是3,与其对应的元素就是8-3=5,而5不在目前的哈希表中,所以将3以及对应下标存入哈希表中,接下来是8,8-8=0,0也不在哈希表中,将8以及对应下标存入哈希表中,接下来是元素2,8-2=6,6在哈希表中,因此2和6就是我们要找的元素,将他们的下标【0,3】返回输出,算法结束。枚举在数组中所有的不同的两个下标的组合逐个检查它们所对应的数的和是否等于 target。官方的哈希表才击败80%,而且比官方的容易懂!原创 2024-01-17 22:41:19 · 594 阅读 · 0 评论 -
数据库课设--家电销售订单管理系统
其次在使用python实现内嵌式sql语言的时候,需要连接sql server ,这就需要自己动手去查找一些网上的资料,刚开始怎么也连不上,最后发现是端口的问题,连接上以后,又由于中文问题导致部分乱码,我整了一晚上才解决,是属性数据类型的问题,于是我改成了nchar类型的,它使用的是unicode编码,不会出现乱码的情况,于是我又学到了解决乱码的方法。将家电进货后,需要确定家电是否在库中已有,如果没有此类的家电信息,需要将家电的基本信息存入库中,并且添加入库的家电的数量;原创 2024-01-12 13:05:33 · 1558 阅读 · 0 评论 -
用python实现adaboost算法例题
AdaBoost先初始化样本权值分布,并从初始训练集训练出一个基学习器,再根据这个基学习器的分类结果对训练样本的权值分布进行调整,再生成新的基学习器,依次进行下去,直到满足要求。1.会用Python提供的方法对数据进行预处理。2.会用python实现adaboost算法。由上图可以发现模型预测的正确率达100%(3)计算分类器系数α \alphaα。(7)将所有的分类器线性相加。(4)更新训练数据的权值分布。(1)初始化样本权值分布。(2)生成基本分类器G1。(5)生成新的分类器G2。(6)循环(2-5)原创 2023-12-23 10:26:26 · 582 阅读 · 0 评论 -
使用SVM对手写体数字图片分类
在用模型做预测时,对两两类别之间的分割超平面分别进行匹配,统计有多少次判别将其华分类1类,多少次判别为2类…,判定所属类别次数最多的就是最后预测的类别。先对1类和2类的数据进行计算,得到1类和2类的分割超平面,然后对2类和3类的数据进行计算,以此类推,直到两两类别分别完成计算。使用sklearn.svm类对手写体数字图片进行分类。训练数据:digits_training.csv。测试数据:digits_testing.csv。第1列是类别,其他列是特征属性。原创 2023-12-23 10:26:04 · 628 阅读 · 0 评论 -
用python对航空公司客户价值进行聚类分析
1.会用Python创建KMeans聚类分析模型;2.使用KMeans模型对航空公司客户价值进行聚类分析;3.会对聚类结果进行分析。原创 2023-12-23 10:25:40 · 972 阅读 · 0 评论 -
Python编程 圣诞树教程 (附代码)专属于程序员的浪漫
(1)以 def 开头,后接定义函数的名称和圆括号(),以冒号结尾(2)圆括号()可为空,也可以传入参数(3)定义函数的内容,与def有缩进关系(4)调用自定义的函数的基本格式为:定义函数的名称();若圆括号()为空,调用时,也为空,若若圆括号()不为空,调用时需传入参数(5)return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回 None。#定义画彩灯的函数if r.randint(0,30) == 0: #randint用来生成随机数。原创 2023-12-23 10:24:49 · 604 阅读 · 0 评论 -
实验用python实现决策树和随机森林分类
其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。训练集和测试集的比例是7:3,选取适当的特征列,使得针对测试样本的分类准确率在80%以上,比较2种分类方法的准确率。3.决策树剪枝:剪枝原因是决策树生成算法生成的树对训练数据的预测很准确, 但是对于未知数据分类很差, 这就产生了过拟合的现象。涉及算法有CART算法。3.对属性是字符串的任意特征进行数字编号处理,显示前5行编码后的结果,每个特定的字符串用一个整数来表示,整数序列从0开始增长。原创 2023-12-17 21:40:24 · 385 阅读 · 0 评论 -
根据豆瓣对《流浪地球》的短评数据进行文本分析和挖掘
关于《流浪地球》的观影评价,已经变成了场逐渐失控的舆论混战,如"枪稿“作者灰狼所说,"关于它的舆论,已经演化成、政治正确、水军横行、自来水灭差评、道德绑架、战狼精神”。为了对《流浪地球》的观影评价有个全面的了解,对《流浪地球》的豆影评数据进行分析和挖掘。相反,不准确的分词处理会产生大量的噪声,严重干扰计算机的识别理解能力,并对后续的处理工作产生较人的影响。营见停用词例如:的、了、都、你、我、么等等,这些词通常在文本中大量出现,会带来大量的噪音数据.因此需要将这些停用词进行过滤。新建一列label存储。原创 2023-12-03 20:24:41 · 431 阅读 · 0 评论 -
Datawhale智能汽车AI挑战赛
CLIP的训练数据是文本-图像对:一张图像和它对应的文本描述,这里希望通过对比学习,模型能够学习到文本-图像对的匹配关系。如下图所示,CLIP包括两个模型:Text Encoder和Image Encoder,其中Text Encoder用来提取文本的特征,可以采用NLP中常用的text transformer模型;CLIP的思想非常简单,只需要看懂这幅图就可以了,左边是训练的原理,CLIP一共有两个模态,一个是文本模态,一个是视觉模态,分别对应了Text Encoder和Image Encoder。原创 2023-11-15 22:04:33 · 574 阅读 · 0 评论 -
机器学习算法实战实战案例代码详解
最后一行代码调用了stack_model函数,并传入了四个基本模型的训练集预测结果(et_oof_train, rf_oof_train, rd_oof_train, ls_oof_train)、测试集预测结果(et_oof_test, rf_oof_test, rd_oof_test, ls_oof_test)以及训练集标签(y_train)进行堆叠模型的训练和预测。同时,这样的映射也可以将原始的分类特征转换为连续的数值特征,有助于提高模型的准确性和效果。缺点:当类别的数量很多时,特征空间会变得非常大。原创 2023-11-13 13:35:42 · 552 阅读 · 0 评论 -
用朴素贝叶斯实现垃圾邮箱分类实验报告
1.把给定的数据集message.csv拆分成训练集和测试集,使用sklearn.naive_bayes.MultionmialNB类常见一个朴素贝叶斯模型,使用训练数据训练出一个预测模型,然后用预测模型对测试集中数据进行分类,评价模型的分类效果。2.message.csv数据集中包含大量的短信,每行数据包括2个字段:短信内容,短信类别(1或者0),短信类别为1的是垃圾短信。2.使用朴素贝叶斯模型对垃圾邮件分类。4.会用评价朴素贝叶斯模型的分类效果。3.会把文本内容变成向量。原创 2023-11-10 20:37:26 · 757 阅读 · 0 评论 -
用Python实现朴素贝叶斯垃圾邮箱分类
此外,通过实践,你还将加深对机器学习算法和文本处理技术的理解和应用能力,为进一步探索更复杂的机器学习问题打下基础。在训练和测试之前,我们需要对数据进行预处理,以便将其转换为适合朴素贝叶斯算法使用的格式。我们将在测试集上测试训练好的朴素贝叶斯分类器,并计算其准确性、召回率、F1得分等指标,以评估其性能。在完成训练和测试后,我们可以将训练好的朴素贝叶斯分类器应用于新的未知邮件文本,并根据其内容将其分类为“垃圾邮件”或“非垃圾邮件”。理解特征提取的概念,掌握常见的特征提取方法,如词袋模型和TF-IDF。原创 2023-11-08 20:51:42 · 1072 阅读 · 3 评论 -
用Python实现感知机学习算法及其对偶算法实验报告
感知机对偶算法通过引入拉格朗日乘子,将原始算法转化为对偶问题,从而避免了对每个样本都进行权重更新的过程,提高了算法的效率。对偶算法的实现:编写Python代码实现感知机对偶算法。3.掌握感知机对偶算法的实现方法:感知机对偶算法通过引入拉格朗日乘子,将原始算法转化为对偶问题,从而避免了对每个样本都进行权重更新的过程,提高了算法的效率。1.理解感知机学习算法的基本思想:感知机是一种简单的线性分类模型,其基本思想是通过不断调整权重,使得分类超平面能够将不同类别的样本正确分开。原创 2023-10-28 20:54:45 · 656 阅读 · 0 评论 -
计算机二级python简单应用题刷题笔记(二)
示例如下:计算lt1列表和lt2列表的向量内积k = x1y1 + x2y2 + x3*y3将每次计算的两组对应元素的值、以及对应元素乘积的累计和K的值显示在屏幕上res = []res = []k = 0r.seed(0)flag = 3flag -= 1name = input("请输入一个名字:")breakprint('对不起,您输入的名字不存在。')原创 2023-09-23 21:56:35 · 830 阅读 · 0 评论 -
计算机二级python简单应用题刷题笔记(一)
当然这个词频统计也可以直接将其背下,后面关于这方面的直接写就好~不过据说这个搞得很复杂,直接遍历好像更简单点,感兴趣的小伙伴可以尝试一下这里就不做了我们直接看下一题。接下来就进入简单应用题啦~感觉会越来越难就连视频时长都变成十几分钟了一起加油吧。排序功能(字典作为辅助,然后用列表方法进行排序),计算平均分。这部分的要求是一直保持输入状态,直到输入回车后结束输入。其中代码可以任意修改,以完成程序功能为准。原创 2023-09-19 01:31:06 · 1422 阅读 · 0 评论 -
机器学习西瓜书+南瓜书吃瓜教程第三章学习笔记
学习笔记~机器学习是想要通过现有的数据,找到隐藏在事物背后的规律。而大部分规律是符合线性模型的形式为了能进行数学运算,样本中的非数值类属性都需要进行数值化。原创 2023-09-19 01:17:20 · 327 阅读 · 0 评论 -
计算机二级python基础题刷题笔记(三)
std = [['张三',90,87,95],['李四',83,80,87],['王五',73,57,55]]modl = "亲爱的{},你的考试成绩是:英语{},数学{},python语言{},总成绩{},特此通知."cnt =cnt +=俺自己写的std = [['张三',90,87,95],['李四',83,80,87],['王五',73,57,55]]modl = "亲爱的{},你的考试成绩是:英语{},数学{},python语言{},总成绩{},特此通知."cnt = 0。原创 2023-09-17 17:04:24 · 2451 阅读 · 0 评论 -
计算机二级python基础题刷题笔记(二)
Python中的join()函数用于连接字符串序列,且字符串序列的分隔符可以自定义,返回连接后的新字符串。原创 2023-09-16 20:20:12 · 1430 阅读 · 0 评论 -
计算机二级python基础题刷题笔记
1、a和b是两个列表变量,列表a为【3,6,9】已给定,键盘输入列表b,将a列表的三个元素插入到b列表中对应的前三个元素的后面,并显示输出在屏幕上。2、获得用户输入的以逗号分隔的三个数字,记为a,b,c,以a为七十数值,b为差,c为数值的数量,产生一个递增的等差数列,将这个数列以列表的格式输出。2、获得用户输入的一个数字,对该数字以30字符宽度,十六进制,居中输出,字母小写,对于字符采用双引号(”)填充。1、以0为随机数种子,随机生成5个在1(含)到97(含)之间的随机数,计算这五个随机数的平方和。原创 2023-09-16 17:15:30 · 1877 阅读 · 0 评论 -
吃瓜教程第一二章学习记录
让计算机像人一样能从数据中学习出规律的一类算法。人工智能>机器学习>深度学习人工智能具体应用场景。原创 2023-09-13 00:50:07 · 269 阅读 · 0 评论 -
混淆矩阵、F1score详解
直白的意思就是模型预测为正例的样本中,其中真正的正例占预测为正例样本的比例,用此标准来评估预测正例的准确度。预测结果中,预测为正的样本中预测正确的概率。预测为正的正例样本与全部预测为正例的样本 (对于预测而言,包括真正例TP,假正例FP)的比值。预测为正的正例占全部实际为正例的样本 (可能将实际正例预测为正例即真正例TP,也可能实际正例预测为负例即假负例FN)的比例(真正正确的占所有实际为正的比例)以实际样本为判断依据,实际为正例的样本中,被预测正确的正例占总实际正例样本的比例。由上图例可知F1= (2。原创 2023-08-14 10:21:38 · 2370 阅读 · 0 评论 -
DatawhaleAI夏令营第三期机器学习用户新增预测挑战赛baseline新手教程
4、遍历数字1到9(代表one-hot编码的9个类别),检查字典对象d中是否包含键名为’key1’、‘key2’、…5、对于每个数字i,如果字典对象d中存在键名为’key’+str(i)的元素,则将该元素的值赋给向量v的第i-1个位置(索引为i-1)。3、如果d的值不是’unknown’,则将字符串形式的字典对象转换成实际的字典对象,可以使用eval()函数来实现这一转换。2、判断输入的d的值是否为’unknown’,如果是,则直接返回全零向量v。1、创建长度为9的全零向量v,用于存储编码后的结果。原创 2023-08-12 20:02:42 · 612 阅读 · 0 评论 -
Datawhale-AI夏令营:脑PET图像分析和疾病预测挑战赛baseline解读
这段代码是一个完整的深度学习模型训练和预测的流程。下面我会逐步解释每个步骤的作用。首先,这段代码导入了必要的库,包括PyTorch、numpy、pandas等。接着,打印出CUDA版本和是否可用GPU,并将模型部署到GPU上(如果可用)。接下来是数据预处理的部分。通过glob.glob函数获取训练和测试图像的路径,并对其进行随机化。然后定义了一个自定义的Dataset类XunFeiDataset,用于读取和处理图像数据。在__getitem__方法中,首先检查数据是否已经加载过,如果已经加载过则直接使用,否原创 2023-07-23 14:27:37 · 312 阅读 · 0 评论 -
python爬虫爬取百度图片并保持到本地
python爬虫爬取百度图片并保持到本地。原创 2023-07-01 01:17:02 · 985 阅读 · 2 评论 -
python大作业
希望我们能把python以及其他的专业技术学的扎实、前卫,我相信有一份好奇,加上一点点努力和实际行动,我们一定能从“一无所知”走向“知道一点点”,然后是“知道一些”,这样慢慢地积累,说不定有一天突然发现,原来我也可以站着巨人的肩膀上,原来我真的已经站着巨人的肩膀上。要求:编写程序对华科或者防灾的官网进行新闻内容的爬取,爬取前100篇新闻,每个新闻生成一个子文件夹,网页上的文本存放于一个文本文件,网页上的图片单独存放于该文件夹中,并统计前100篇新闻中出现频率最高的10个词汇(最好生成词云图)。原创 2023-05-30 21:31:11 · 505 阅读 · 0 评论 -
python-数据分析2csv
首先,我们需要导入数据并计算一些统计指标。请按照以下步骤操作:使用pandas库的read_csv()函数导入CSV文件。使用head()函数查看前五行。使用info()函数查看数据类型和缺失值。使用describe()函数查看数据统计指标。原创 2023-05-07 21:57:32 · 1259 阅读 · 1 评论 -
python-简单数据分析csv
我们可以使用Python中的一些常见数据分析和机器学习库,比如pandas,matplotlib和scikit-learn等,来对数据进行探索性分析、可视化分析和机器学习建模。原创 2023-05-07 21:44:38 · 1057 阅读 · 0 评论 -
数据预处理概述和数据清洗
数据预处理的主要作用是为将未经处理的原始数据转换为在数量、结构和格式方面完全适合于对应的数据挖掘任务的干净数据,数据预处理是一种已被证明上述问题的有效方法。数据预处理主要包括数据清理、数据集成、数据变换、数据归约4种基本过程。图形显示有助于可视化地审视数据,利于识别噪声和离群点,对数据预处理是相当有用的。原创 2023-03-15 20:01:44 · 3603 阅读 · 0 评论 -
python--习题4
随机生成20个学生成绩,并定义函数来判断这20个学生成绩的等级(100-90为A,80-89为B,其余为C)。斗地主是一款风靡全国的纸牌类游戏,有着广泛的群众基础,一幅牌一共有54张,包括大王小王以及黑桃、红桃、梅花、方块4种花色各13张,请模拟斗地主发牌过程。输出9行内容,第1行输出1,第二行输出12,第3行输出123,以此类推,第9行输出123456789。(1)生成一个大文件data.txt,要求1200行,每行随机为0-20的整数。学生信息,学号,姓名性别,男女宿舍,房间号,联系电话。原创 2023-02-16 22:14:15 · 1671 阅读 · 0 评论 -
python--Scipy&Matplotlib
是Python科学计算程序的核心包,用于有效的计算NumPy矩阵Matplotlib是一个Python2D绘图库。原创 2023-02-16 00:06:00 · 295 阅读 · 0 评论 -
python--数据分析pandas
Pandas是进行科学数据分析中另一个比较常用的数据库,基于NumPy,但加入了更多的高级数据结构以及操作工具,进一步简化了NumPy等运算与应用。原创 2023-02-09 23:39:33 · 300 阅读 · 0 评论 -
python--简单线性回归
新年第一篇有些敷衍。原创 2023-02-06 19:16:20 · 355 阅读 · 0 评论 -
python--NumPy
NumPy是Numerical Python的简称,它是用于处理数组的 python 库,支持大规模数组与矩阵运算的函数库。为了方便数组运算NumPy中提供了大量的函数,常与Pandas、SciPy、Matplotlib一起使用提供非常强大的科学运算环境。原创 2023-01-19 16:14:18 · 133 阅读 · 0 评论 -
python--文件、Try Except
打开文件进行读取,如果文件不存在则报错。“w” - 写入 - 打开文件进行写入,如果文件不存在则创建该文件。“a” - 追加 - 打开供追加的文件,如果不存在则创建该文件。因为 “r” (读取)和 “t” (文本)是默认值,所以不需要指定它们。没有writeline(),因为可以使用write()来写入单行内容。“x” - 创建 - 创建指定的文件,如果文件存在则返回错误。此外,您可以指定文件是应该作为二进制还是文本模式进行处理。“t” - 文本 - 默认值。“b” - 二进制 - 二进制模式(例如图像)原创 2023-01-09 16:30:57 · 365 阅读 · 0 评论 -
python--json、RegEx
B 返回指定字符存在的匹配项,但不在单词的开头(或结尾处) r"\Bain"\A 如果指定的字符位于字符串的开头,则返回匹配项 “\AThe”\b 返回指定字符位于单词的开头或末尾的匹配项 r"\bain"span() 返回的元组包含了匹配的开始和结束位置。\d 返回字符串包含数字的匹配项(数字 0-9)sub() 函数把匹配替换为您选择的文本。\s 返回字符串包含空白字符的匹配项。.string 返回传入函数的字符串。group() 返回匹配的字符串部分。函数返回包含所有匹配项的列表。原创 2023-01-08 23:51:50 · 75 阅读 · 0 评论 -
python综合实例购物车
当然还可能是一些更小白的问题,比如你想写入的文件正在打开或者你的代码需要你自己先创建文件,这也可能会返回这个错误。用户选择结算·购物车后检测余额是否足够,够就直接·扣款,不够就提醒。第一步:找到你python文件所在的文件夹,右键属性查看属性状态。最后,希望大家能避免这些错误,给自己节省一点宝贵的时间。用所学·python语法实现一个购物车,包括以下要求。用文件保存购买历史、购物车历史以及商品列表。用户可以一直购买商品,也可以直接退出。初始启动程序,让用户输入初始金额。5:清空购物车及购买历史。原创 2023-01-07 21:25:49 · 1732 阅读 · 1 评论 -
python--模块、日期
Python 中的日期不是其自身的数据类型,但是我们可以导入名为 datetime 的模块,把日期视作日期模块。使用模块,我们就可以用 import 语句来使用我们刚刚创建的模块。创建模块,只需将所需代码保存在文件扩展名为 .py 的文件中。可以在导入模块时使用 as 关键字创建别名。日期包含年、月、日、小时、分钟、秒和微秒。可随意命名但文件扩展名必须为 .py。仅从moble中导入person1。命名为moble.py。原创 2023-01-02 19:48:44 · 129 阅读 · 0 评论 -
Python--继承、迭代
父类是继承的类,也称为基类。子类是从另一个类继承的类,也称为派生类。原创 2022-12-23 15:34:42 · 199 阅读 · 0 评论 -
python学习---类和对象
Python 中的几乎所有东西都是对象,拥有属性和方法。原创 2022-12-21 23:19:54 · 99 阅读 · 0 评论