动态规划 一维DP

动态规划(Dynamic Programming)是一种常用的算法思想,可以解决一类重叠子问题的优化问题。一维动态规划是指在一个方向上考虑问题,比如求解一个数组中每个元素的最小操作次数,或者求解一个数列中每个数字的最大值等。下面给出一个一维DP的示例代码,以求解一个数组中每个元素的最小操作次数为例:

 

def min_operation(nums):  
    n = len(nums)  
    # 初始化dp数组  
    dp = [0] * n  
    # dp[i]表示数字i需要多少次操作才能变为0  
    dp[0] = 0  
    # 每次操作可以将当前数字变为相邻两个数字的平均值  
    for i in range(1, n):  
        dp[i] = dp[i-1] + 1  
        if nums[i-1] > nums[i]:  
            # 如果i-1的值大于i的值,需要进行一次操作  
            dp[i] += 1  
    return dp

在这个代码中,我们定义了一个min_operation函数,接受一个数组nums,返回数组中每个元素的最小操作次数。首先定义了一个变量n表示数组的长度,然后定义了一个dp数组,初始化为全0。接着从第二个数字开始遍历数组,对于每个数字,如果它比前一个数字小,则需要一次操作将其变为前一个数字的平均值;否则不需要操作。最后返回dp数组即可。

这个算法的时间复杂度是O(n),空间复杂度是O(n)。在空间复杂度较大时可以考虑使用滚动数组的方式优化空间复杂度,即将旧的数组存储在外部存储器中,只保留一部分最新的数据在内存中,从而减少内存的占用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值