1.Sigmoid函数,即f(x)=1/(1+e-x)。是神经元的非线性作用函数。广泛应用在神经网络中。又叫Logistic函数。\n\n机器学习中一个重要的预测模型逻辑回归(LR)就是基于Sigmoid函数实现的。LR模型的主要任务是给定一些历史的{X,Y},其中X是样本n个特征值,Y的取值是{0,1}代表正例与负例,通过对这些历史样本的学习,从而得到一个数学模型,给定一个新的X,能够预测出Y。LR模型是一个二分类模型,即对于一个X,预测其发生或不发生。但事实上,对于一个事件发生的情况,往往不能得到100%的预测,因此LR可以得到一个事件发生的可能性,超过50%则认为事件发生,低于50%则认为事件不发\n\n2.RBF– 径向基核函数 (Radial Basis Function)Radical: adj. 放射状的; 辐射状的\\Gaussian函数还有另外一个叫法——径向基函数。就是某种沿径向对称的标量函数。 通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小。\n\n一、什么是核函数?我来举一个核函数把低维空间映射到高维空间的例子。下面这张图位于第一、二象限内。我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母。我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横、纵坐标是两个特征。显然,在这个二维空间内,“+”“-”两类数据不是线性可分的。\n\n\n\n
Sigmoid函数
于 2022-09-27 23:15:38 首次发布