DeepLearning花书阅读记录(1)

DeepLearning阅读记录(1)

1 引言

  • 计算机可以轻易解决一系列形式化数学规则来描述的问题,但难以解决对人来说容易执行但难以形式化描述的任务(如识别人说话/图像中的人脸)
  • 解决方案:计算机从经验中学习,以层次化概念(通过与简单概念间的关系定义)体系理解世界
  • 硬编码:设计足够复杂的形式化规则来精确描述世界,计算机使用逻辑推理规则自动理解形式化语言声明
  • 机器学习:系统需具备自己获取知识的能力,从原始数据中提取模式的能力;解决涉及现实世界知识问题并作出主观决策
    • 算法:逻辑回归,朴素贝叶斯···
    • 性能:依赖于给定数据的表示(特征)
  • 人工智能任务:提取合适特征集->特征提供给机器学习算法
  • 表示学习:使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。(最少人工干涉)
    • 例子:自编码器(希望尽可能多的保留信息,希望新的表示有好的特征,实现不同特性设计不同形式自编码器)
      • 编码器函数:将输入数据转换为一种不同的表示
      • 解码器函数:将新的表示转换到原来的形式
  • 变差因素:设计特征/学习特征的算法时,分离出能解释观察数据的数据抽象。(困难:多/高层次因素)
  • 深度学习:通过其他简单的表示来表达复杂表示,让计算机通过简单概念构建复杂概念
    • 深度学习模型:前馈神经网络/多层感知机MLP(multilayer perceptron)
      • 多层感知机:将一组输入映射到输出值的数学函数(该函数由许多简单函数复合而成)
  • 解释深度学习的视角
    • 学习数据的正确表示的想法
    • 深度(促使计算机学习一个多步骤的计算机程序)
        1. 基于评估架构所需执行的顺序指令的数目为模型深度
        1. 将描述概念彼此如何关联的图的深度视为模型深度
  • 深度学习是一种特定类型的机器学习
    在这里插入图片描述
    在这里插入图片描述

1.1 面向读者

  • 学生/打工人
  • 全书分三个部分:
    • 一、数学(线代 概率论)/机器学习基础
    • 二、成熟深度学习算法
    • 三、展望性想法
  • 假设具备计算机科学背景,熟悉编程,对计算性能、复杂性理论、微积分、图论有了解

1.2 深度学习历史趋势

  • 有悠久丰富历史,随哲学观点消逝,名称尘封
  • 训练数据集增加,深度学习变得更有用
  • 硬件改善,模型规模增长
  • 用于解决复杂应用,精度提高
1.2.1 神经网络名称/命运变迁
  • 20c40s-60s 出现在控制论中
  • 20c80s-90s 联结主义
  • 2006 深度学习 复兴
  • 深度学习神经观点启发于:
    • 逆向大脑背后的计算原理,并复制其功能
    • 理解大脑和人类智能背后的原理
  • 深度学习前身:从神经科学的角度出发的简单线性模型
  • 线性模型(局限性:无法学习异或函数)
    • 感知机:为第一个能根据每个类别的输入样本来学习权重的模型
    • 自适应线性单元(ADALINE):简单地返回函数 f(x) 本身的值来预测一个实数,学习从数据预测这些数
      • 用于调节ADALINE权重的训练算法:随机梯度下降的一种特例
          
  • 20c80s 神经网络二次浪潮⬅联结主义/并行分布处理浪潮
    • 联结主义:将大量简单的计算单元连接在一起时可以实现智能行为
    • 分布式表示:每个输入由多个特征表示,每个特征参与到多个可能输入的表示
    • 反向传播:训练深度模型的主导方法
  • 20c90s 神经网络序列建模
    • 长短期记忆(long short-term memory, LSTM)网络
  • 2006+ 第三次浪潮
    • 深度信念神经网络➡贪婪逐层预训练策略
    • 可训练许多其他类型的深度网络
    • 可系统地提高测试样例上的泛化性能
1.2.2 与日俱增的数据量
  • 训练数据增加,学习表现提升
  • 侧重于如何通过无监督或半监督学习充分利用大量的未标注样本
1.2.3 与日俱增的模型规模
  • 们现在拥有的计算资源可以运行更大规模模型,更大的网络能够在更复杂的任务中实现更高的精度
1.2.4 与日俱增的精度、复杂度和对现实世界的冲击
  • 20c80s 精确识别和预测的能力一直在提高
  • 图像识别与分类:可处理图像尺寸增加 不再需要裁剪 可识别种类增加 错误率降低
  • 语音识别:错误率陡然下降
  • 行人检测和图像分割;交通标志分类
  • 强化学习:在没有人类操作者指导的情况下,通过试错来学习执行任务
  • 进步严重依赖于软件基础架构的进展
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值