文章目录
DeepLearning阅读记录(1)
1 引言
- 计算机可以轻易解决一系列形式化数学规则来描述的问题,但难以解决对人来说容易执行但
难以形式化
描述的任务(如识别人说话/图像中的人脸) - 解决方案:计算机从经验中学习,以层次化概念(通过与简单概念间的关系定义)体系理解世界
硬编码
:设计足够复杂的形式化规则来精确描述世界,计算机使用逻辑推理规则自动理解形式化语言声明机器学习
:系统需具备自己获取知识的能力,从原始数据中提取模式的能力;解决涉及现实世界知识问题并作出主观决策算法
:逻辑回归,朴素贝叶斯···性能
:依赖于给定数据的表示(特征)
人工智能任务
:提取合适特征集->特征提供给机器学习算法表示学习
:使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。(最少人工干涉)- 例子:
自编码器
(希望尽可能多的保留信息,希望新的表示有好的特征,实现不同特性设计不同形式自编码器)编码器函数
:将输入数据转换为一种不同的表示解码器函数
:将新的表示转换到原来的形式
- 例子:
变差因素
:设计特征/学习特征的算法时,分离出能解释观察数据的数据抽象。(困难:多/高层次因素)深度学习
:通过其他简单的表示来表达复杂表示,让计算机通过简单概念构建复杂概念- 深度学习模型:前馈神经网络/多层感知机MLP(multilayer perceptron)
- 多层感知机:将一组输入映射到输出值的数学函数(该函数由许多简单函数复合而成)
- 深度学习模型:前馈神经网络/多层感知机MLP(multilayer perceptron)
- 解释深度学习的
视角
:- 学习数据的
正确表示
的想法 深度
(促使计算机学习一个多步骤的计算机程序)-
- 基于评估架构所需执行的顺序指令的数目为模型深度
-
- 将描述概念彼此如何关联的图的深度视为模型深度
-
- 学习数据的
- 深度学习是一种特定类型的机器学习
1.1 面向读者
- 学生/打工人
- 全书分三个部分:
- 一、
数学
(线代 概率论)/机器学习基础 - 二、成熟深度学习
算法
- 三、
展望
性想法
- 一、
- 假设具备计算机科学背景,熟悉编程,对计算性能、复杂性理论、微积分、图论有了解
1.2 深度学习历史趋势
- 有悠久丰富历史,随哲学观点消逝,名称尘封
- 训练数据集增加,深度学习变得更有用
- 硬件改善,模型规模增长
- 用于解决复杂应用,精度提高
1.2.1 神经网络名称/命运变迁
- 20c40s-60s 出现在控制论中
- 20c80s-90s 联结主义
- 2006 深度学习 复兴
- 深度学习神经观点启发于:
逆向
大脑背后的计算原理,并复制其功能理解
大脑和人类智能背后的原理
- 深度学习前身:从神经科学的角度出发的简单
线性模型
- 线性模型(局限性:无法学习异或函数)
感知机
:为第一个能根据每个类别的输入样本来学习权重的模型- 自适应线性单元(
ADALINE
):简单地返回函数 f(x) 本身的值来预测一个实数,学习从数据预测这些数- 用于调节ADALINE权重的训练算法:
随机梯度下降
的一种特例
- 用于调节ADALINE权重的训练算法:
- 20c80s 神经网络二次浪潮⬅联结主义/并行分布处理浪潮
联结主义
:将大量简单的计算单元连接在一起时可以实现智能行为分布式表示
:每个输入由多个特征表示,每个特征参与到多个可能输入的表示反向传播
:训练深度模型的主导方法
- 20c90s 神经网络序列建模
- 长短期记忆(long short-term memory,
LSTM
)网络
- 长短期记忆(long short-term memory,
- 2006+ 第三次浪潮
- 深度信念神经网络➡
贪婪
逐层预训练策略 - 可训练许多
其他类型
的深度网络 - 可系统地提高测试样例上的
泛化性能
- 深度信念神经网络➡
1.2.2 与日俱增的数据量
训练数据
增加,学习表现提升- 侧重于如何通过
无监督或半监督学习
充分利用大量的未标注样本
1.2.3 与日俱增的模型规模
- 们现在拥有的
计算资源
可以运行更大规模
模型,更大的网络能够在更复杂的任务中实现更高的精度
1.2.4 与日俱增的精度、复杂度和对现实世界的冲击
- 20c80s 精确识别和预测的能力一直在提高
图像识别与分类
:可处理图像尺寸增加 不再需要裁剪 可识别种类增加 错误率降低语音识别
:错误率陡然下降行人检测和图像分割
;交通标志分类强化学习
:在没有人类操作者指导的情况下,通过试错来学习执行任务- 进步严重依赖于
软件
基础架构
的进展