【卷积神经网络和循环神经网络】

         卷积神经网络 (CNN)

人在认知图像时是分层抽象的,首先理解的是颜色和亮度,然后是边缘、角点、直线等局部细节特征,接下来是纹理、几何形状等更复杂的信息和结构,最后形成整个物体的概念。

  卷积神经网络工作时模拟人认知图像的过程,它由多个卷积层构成,每个卷积层包含多个卷积核,用这些卷积核从左向右、从上往下依次扫描整个图像,得到称为特征图(feature map)的输出数据。网络前面的卷积层捕捉图像局部、细节信息,有小的感受野,即输出图像的每个像素只利用输入图像很小的一个范围。后面的卷积层感受野逐层加大,用于捕获图像更复杂,更抽象的信息。经过多个卷积层的运算,最后得到图像在各个不同尺度的抽象表示。

层:神经网络中的核心组件是层,它是一种数据处理模块,可以将其看作是数据过滤器,进去一些数据,出来的数据更具代表性。层的创建原理类似于神经元。

卷积神经网络结构

↗输入层

↗卷积层

↗激活函数

↗池化层

↗全连接层卷积神经网络

 注:全连接网络的缺陷:

首先将图像展开为向量会丢失空间信息;其次参数过多效率低下,训练困难;同时大量的参数也很快会导致网络过拟合密集连接层和卷积层的根本区别在于,Dense层从输入特征空间中学到的是全局模式(比如MNIST数字,全局模式就是涉及所有像素的模式),而卷积层学到的是局部模式,对于图像来说,学到的就是在输入图像的二维小窗口中发现的模式。

这个重要特性使得卷积神经网络具有两个特殊性质:

※卷积神经网络学习到的模式具有平移不变性。卷积神经网络在图像右下角学到某个模式之后,它可以在任何地方识别这个模式,比如左上角。对于密集链接网络来说,如果模式出现在新的位置,它只能重新学习这个模式。这使得卷积神经网络在处理图像时可以很高效利用数据(因为视觉世界从根本上具有平移不变性),它只需要较少的训练样本基于可以学习到具有泛化能力的数据表示

※卷积神经网络可以学习到模式的空间层次结构,例如第一个卷积层学习较小的局部模式(比如边缘),第二个卷积层将学习由第一层特征组成的更大的模式,以此类推。这使得卷积神经网络可以有效地学习越来越复杂、越来越抽象的视觉概念(因为视觉世界从根本上具有空间层次结构)。

         循环神经网络(RNN)

不同于卷积神经网络有很详细的层次结构,每个层都有自己要实现的任务,我们根据每层的需要就可以编辑出卷积神经网络,但是循环神经网络似乎没有这种很详细的层次结构,循环神经网络主要解决的是有顺序的数据结构,例如说话的顺序、文本的顺序等。

CNN优点:

卷积神经网络仿造生物的视知觉机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程要求

卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络"

卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络

CNN局限性:

※将固定大小的向量作为输入(比如一张图片),然后输出一个固定大小的向量(比如不同分类的概率)。

※CNN还按照固定的计算步骤(比如模型中层的数量)来实现这样的输入输出。这样的神经网络没有持久性

 

RNN优点:

※RNN 是包含循环的网络,允许信息的持久化。

※在自然语言处理(NLP)领域,RNN已经可以做语音识别、机器翻译、生成手写字符,以及构建强大的语言模型。

※机器视觉领域,RNN也非常流行。包括帧级别的视频分类,图像描述,视频描述以及基于图像的Q&A等等

RNN局限:因为RNN是有记忆的网络,当前输出与之前的所有状态都相关,这显然是不合适的,因为距离过远的数据之间可能关联并不大,而且这也导致了反向传播中可能出现梯度消失的情况。

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值