目录
虽然 PINN 和文章中提出的方法都利用深度学习来解决偏微分方程,但它们之间存在着一些关键的区别:
PINN
PINN(Physics-Informed Neural Networks,物理信息神经网络)是一种结合了物理定律(通常是偏微分方程)与数据驱动的深度学习模型。PINN通常被分类为有监督学习的一种形式,原因如下:
-
训练过程:在训练PINN时,网络需要同时学习数据(例如,边界条件或初始条件)和物理定律(例如,偏微分方程)。这个过程涉及到一个损失函数,它通常由两部分组成:一部分是数据损失,用于衡量网络预测与实际数据之间的差异;另一部分是物理损失,用于衡量网络预测与物理定律之间的不一致性。
-
监督信号:物理定律提供了额外的监督信号,指导网络学习。这些物理定律可以被视为一种先验知识,它们“监督”网络学习的过程,确保网络的输出不仅符合数据,而且符合已知的物理规律。
-
标签:虽然PINN不需要大量的标记数据(因为它利用物理定律来指导学习)[满足方程是不需要训练集的],但它确实需要一些数据点来提供监督,比如边界,条件或初始条件这些可以被视为标签。
因此,PINN是一种有监督学习方法,尽管它的监督信号比传统的机器学习方法更为复杂,因为它结合了数据和物理知识。PINN的优势在于它可以在数据稀缺的情况下仍然能够学习到合理的模型,因为它可以利用物理定律来弥补数据的不足。
Q&A
没有任何数据,是不是也可以用pinn
是的,即使没有任何数据,也可以使用PINN(物理信息神经网络,Physics-Informed Neural Networks)进行建模和预测。PINN是一种结合了深度学习和物理定律的神经网络,它通过在损失函数中引入物理定律(如偏微分方程)来训练网络,即使在没有实验数据的情况下也能进行学习和预测。
以下是使用PINN的几个步骤,即使没有数据:
-
定义问题:明确需要解决的物理问题,以及相关的物理定律(通常是偏微分方程)。
-
构建网络:设计一个神经网络,其输出是你要解决的物理量的预测。
-
物理信息注入:将物理定律作为额外的损失项加入到神经网络的训练过程中。这样,网络不仅需要拟合数据(即使没有数据,也可以是理论上的解),还需要满足物理定律。
-
边界条件:如果有的话,将边界条件加入到损失函数中。即使没有数据,边界条件通常也是已知的。
-
训练网络:通过网络训练过程来优化网络的权重,使得网络输出同时满足物理定律和边界条件。
-
预测和验证:使用训练好的网络进行预测,并通过独立的验证方法(如解析解、数值解或其他独立数据)来验证网络的预测。
在没有数据的情况下,PINN的优势在于可以利用物理知识来指导学习过程,这在数据稀缺或获取成本高昂的情况下尤其有用。然而,需要注意的是,没有数据时,网络可能更依赖于准确的物理模型和合适的边界条件,而且可能需要对网络结构和训练过程进行更细致的调整。
pinn解pde我是不是可以认为,物理损失就是方程损失,数据损失就是边界和初值损失
是的,您的理解是正确的。在使用物理信息神经网络(PINN)解决偏微分方程(PDE)时,通常可以将损失函数分为几个部分,具体如下:
-
物理损失(方程损失):这部分损失是由于神经网络输出不满足物理定律(即偏微分方程)而产生的。在PINN中,这是通过在内部点(即不是边界或初始条件的点)上评估PDE并将结果与零比较来计算的。这个损失确保了神经网络的输出遵循预定的物理规律。
物理损失通常可以表示为:
其中,�f 是PDE的残差,�u 是神经网络的输出,��xi 是内部点的坐标,�N 是内部点的数量。 -
数据损失(边界和初值损失):这部分损失是由于神经网络的输出不满足边界条件和初始条件而产生的。在PINN中,这是通过在边界和初始条件的点上评估神经网络的输出并将结果与实际边界和初始值比较来计算的。
数据损失通常可以表示为:
其中,�g 是边界或初始条件,�truegtrue 是已知的真实边界或初始值,��xj 是边界或初始点的坐标,�M 是边界和初始点的数量。
总的来说,PINN的总损失函数是物理损失和数据损失的加权和:
其中,wphysics 和 wdata 是权重系数,用于平衡这两部分损失的重要性。
通过最小化这个总损失函数,PINN可以在没有数据或仅有少量数据的情况下学习到满足物理规律的解。
看看大家对pinn的描述吧
物理信息神经网络在地下水铀迁移对流-弥散方程中的应用_“PINN 通常采用全连接前馈神经网络,其输入为时间、空间坐标等独立变量,输出为温度、压力
或速度等物理量。通过在损失函数中引入物理方程残差,PINN 可以避免完全依赖数据的训练。
损失函数一般由数据损失和物理损失两部分组成,
数据损失为基于少量观测数据计算网络预测值与真实数据之间的误差;
物理损失为基于物理方程的残差,即计算预测值与物理规律之间的偏差。
其优化目标是同时最小化由数据损失和物理损失导致的误差,从而在数据较少的情况下,依然能够逼近物理方程的精确解。
与传统数值方法相比,PINN 通过引入物理约束减少了对大规模观测数据的需求,并且更加适用
于高维问题[19],此外,PINN 在预测过程中可以始终保持物理上的一致性,确保预测结果符合物理定
律,避免了纯数据驱动方法可能产生的不合理现象。这使得 PINN 在物理建模与科学计算中具有广
阔的应用前景。
本研究建立了一个具有 1 个输入层、7 个全链接隐藏层和 1 个输出层的 PINN 神经网络
,每个隐
藏层中包含 20 个神经元,其结构见图 2,这一结构是基于对网络表达能力与计算效率的平衡而确定
的。7 个隐藏层可以有效增强模型的表达能力,确保其能够拟合复杂的函数关系,同时又避免因层
数过多导致计算量过大或出现过拟合问题。每层 20 个神经元在提供足够表达能力的同时也避免了参
数过多带来的训练困难,使得模型具有较强的拟合能力和适当的计算效率。蓝色圆圈为输入层神经
元,橙色圆圈为隐藏层神经元,紫色圆圈为输出层神经元,绿色圆圈为物理损失项,蓝色线框为数
据损失项。
h(i)为第 i 个隐藏层的输出,为每个隐藏层的激活函数。输入层将空间和时间变量 x 与 t 传递至第 1
隐藏层,第 1 层通过表达式h x 㘵 进行非线性转换。随后,每个隐藏层输出均以h
h 㘵 㘵 递归计算,其中 ,,t,每一层通过激活函数对上一层的输出进行非线性变换,
从而增强网络对复杂关系的拟合能力。最终在第 9 层,即输出层,直接得到预测值 h t 㘵 ,
输出模型对目标函数的预测
随机失活
由于全链接神经网络具有较强的拟合能力,为防止其在进行多次训练后出现“过拟合”的现象,
笔者对传统 PINN 结构进行了改进,在每个隐藏层中加入了随机失活(Dropout)处理来提高模型的
泛化能力。Dropout 是一种用于防止神经网络过拟合的正则化方法,其通过在训练过程中随机丢弃部
分神经元,以提高模型的泛化能力。在每一轮训练中,Dropout 以一定的概率,随机将网络中的神经
元置为无效,使得这些神经元在前向传播和反向传播中不参与计算。这一机制迫使网络在不同训练
批次中利用不同的子网络进行学习,从而减少对某一特定神经元或路径的依赖,类似于集成了多个
子网络的效果。通过这种方式,Dropout 能有效提升模型的鲁棒性,并减少“过拟合”[20]。随机失活
处理效果见图 3,空心圆为被随机失活的神经元。
方程
损失
损失函数的设计包含两个部分,
分别是在计算域内部的对流-弥散方程残差,
以及预测值与边界和初始条件之间的误差。均方误差(Mean Squared Error,MSE)是最常用的回归损失函数,其核心是求
取模型的预测结果与实际目标值之间的差异,通过调整模型参数最小化MSE,使其预测值尽可能接
近实际目标值。MSE值越小,意味着模型的预测结果与实际目标值之间的差异越小,模型的性能越
好。根据本研究建立的物理信息神经网络的结构特性,自行构建模型MSE,目的是确保模型输出同
时满足对流-弥散方程及其初始和边界条件。本研究所采用的模型MSE定义如下:
训练
分别测试传统 PINN 模型和加入随机失活处理的 PINN 模型在本研究中的训练效果,得到训练
迭代次数与损失值的关系见图 4。在传统 PINN 模型中进行 1 000 次迭代后,损失值达到 0.083 582;
而在加入随机失活处理的 PINN 模型中,进行 800 次迭代损失值便可下降到 0.083 281。加入随机失
活处理后的模型表现出更高的泛化能力,并有效提高了训练效率
Solving partial diferential equations by a supervised learning
technique, applied for the reaction–difusion equation
technique, applied for the reaction–difusion equation
文章中提出的方法利用了弱监督学习来求解一维反应-扩散方程,其核心思想是将偏微分方程转化为一个物理信息损失函数,并通过训练深度神经网络来最小化该损失函数,从而得到方程的解。
具体步骤如下:
-
定义问题和网络结构:
- 考虑一维反应-扩散方程,并假设边界条件为Dirichlet边界条件。
- 选择一个U-Net结构的卷积神经网络,它能够处理不同尺度的图像数据,并将其用于解决PDE问题。P1P4
-
构建物理信息损失函数:
- 将反应-扩散方程离散化,并将其转化为代数形式,得到每个空间时间点上变量的关系式。
- 将该关系式解码为一个3x3的卷积核,该卷积核可以捕捉方程的物理规律。
- 将卷积核应用于输入矩阵(包含边界条件),并通过计算损失函数来评估网络输出与真实值之间的差异。P4
-
训练网络:
- 利用反向传播算法和梯度下降方法来最小化损失函数,从而更新网络参数。
- 通过迭代训练过程,网络逐渐学习到反应-扩散方程的解。P4
-
结果分析与验证:
- 将网络输出与解析解和数值解进行比较,验证网络解的准确性。
- 分析不同反应和扩散系数对网络解的影响。P5
该方法的优势:
- 弱监督学习: 只需要边界条件,无需提供方程的解析解或数值解,即可训练网络。
- 物理信息: 将物理规律融入损失函数,使得网络能够学习到方程的物理意义。
- 泛化能力: 训练好的网络可以应用于不同参数和初始条件的反应-扩散方程。
该方法的局限性:
- 初始时间步预测: 网络可能无法准确预测初始时间步的浓度值,这可能是由于高梯度和边界条件的影响。
- 参数敏感性: 网络解可能对反应和扩散系数的值比较敏感,需要进行参数敏感性分析。
总而言之,文章提出的方法为利用深度学习求解偏微分方程提供了一种新的思路,它结合了弱监督学习和物理信息,具有较好的泛化能力和应用潜力
虽然 PINN 和文章中提出的方法都利用深度学习来解决偏微分方程,但它们之间存在着一些关键的区别:
1. 监督方式:
-
PINN: 需要提供偏微分方程的解析解或数值解作为监督信号,用于训练网络。
-
文章方法: 只需要提供边界条件和初始条件,无需提供任何解析解或数值解,属于弱监督学习。P1
2. 物理信息嵌入:
-
PINN: 将偏微分方程的残差项作为损失函数的一部分,直接将物理规律融入网络训练过程。
-
文章方法: 将偏微分方程离散化,并将其转化为卷积核,间接地将物理规律融入网络训练过程。P4
-
在这方面,已经使用了 U-Net 工程形状内的全卷积编码器-解码器组织,因为 Ronneberger 等人 [15] 将这种设计用于生物医学图片分割。在其他结构中选择全卷积设计的最主要原因是这种结构对不同尺度上理解问题的适应性。该 arrange 包含一些编码卷积和平移池化层,这些层在学习句柄中保留了输入矩阵估计。最后,输出矩阵给出了离散时空内 PDE 的解。网络的示意图结构如图 1 所示。如图 1 所示,每个编码层都已使用 Fusion 链接连接到相应的解码器层。fusion link 的用途是将输入的边界值传递给输出层,并且通过此过程,网络不受其瓶颈层中输入结构的约束。我们设计中的层数是自断言的,可以想象将尽可能多的层包含在网络中。
3. 网络结构:
-
PINN: 通常使用多层感知机(MLP)作为网络结构,可以处理任意维度的输入和输出。
-
文章方法: 使用 U-Net 结构,更适合处理图像数据,并能够捕捉不同尺度的信息。P4
4. 应用范围:
-
PINN: 可以应用于各种类型的偏微分方程,包括线性、非线性、高维等。
-
文章方法: 主要针对一维反应-扩散方程,并且需要将偏微分方程离散化。P1P2
5. 优势与局限性:
-
PINN: 优点是训练过程相对简单,可以处理各种类型的偏微分方程;缺点是需要提供解析解或数值解,这在许多情况下并不容易实现。
-
文章方法: 优点是无需提供解析解或数值解,可以处理数据稀缺的情况;缺点是需要将偏微分方程离散化,可能会损失一些精度,并且网络结构相对复杂。P1P4
总而言之,PINN 和文章中提出的方法都是利用深度学习来解决偏微分方程的有效方法,它们各有优缺点,可以根据具体问题选择合适的方法。
这篇文章介绍了使用弱监督学习方法来求解一维反应扩散方程(RDE)。P1
方法概述:
-
弱监督学习: 与传统的深度学习方法不同,该方法不需要大量标记数据进行训练,而是仅使用方程的边界条件和初始条件进行训练。P1
-
物理信息损失函数: 将 RDE 的微分形式解码为物理信息损失函数,使得神经网络能够学习方程的物理规律,从而无需已知解或标记信息即可找到解。P3
-
U-Net 架构: 使用 U-Net 架构作为神经网络模型,该架构具有编码器-解码器结构,能够有效地捕捉空间和时间信息。P4
-
卷积核: 设计一个特定的 3x3 卷积核,将 RDE 的物理规律嵌入到神经网络中。P4
结果:
-
与解析解和数值解一致性高: 通过与解析解和有限差分方法(FDM)的结果进行比较,发现深度学习方法得到的解具有很高的一致性。P7
-
对系数变化敏感: 深度学习方法的解对反应和扩散系数的值比较敏感,系数的变化会导致解的误差增加。P7P8
-
有效解决数据不足问题: 弱监督学习方法能够有效地解决深度学习中数据不足的问题,特别适用于复杂问题中标记数据有限的情况。P8
结论:
深度学习方法在求解反应扩散方程方面具有很大的潜力,弱监督学习方法的引入进一步降低了数据需求,使得该方法更具实用价值。然而,该方法对系数变化比较敏感,需要进一步研究以提高其鲁棒性。
在文章中,Fusion Link 指的是融合链接,用于将输入矩阵的边界值传递到输出层。
作用:
-
传递边界值: 通过融合链接,网络能够将输入矩阵的边界值直接传递到输出层,避免网络在瓶颈层学习输入矩阵的结构,从而提高网络的泛化能力。P4
-
保证边界条件: 融合链接确保了网络的输出能够满足边界条件,这对于求解 PDE 问题至关重要。
工作原理:
-
编码器-解码器结构: U-Net 架构由编码器和解码器组成,其中编码器用于提取特征,解码器用于生成输出。P4
-
连接方式: 每个编码器层与其对应的解码器层之间通过融合链接进行连接。P4
-
信息传递: 融合链接将编码器层提取的特征信息与解码器层的输出信息进行融合,从而生成最终的输出。
总结:
融合链接是 U-Net 架构中的一个重要组成部分,它能够有效地将输入矩阵的边界值传递到输出层,从而提高网络的泛化能力和求解 PDE 问题的准确性。