遗传算法(GA)解决数据拟合和拟合方程中未知参数问题

一、数据拟合

数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学工程问题可以通过诸如采样实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合(fitting)。

图1.数据拟合图

二、GA算法(遗传算法)

遗传算法的起源可追溯到20世纪60年代初期。1967年,美国密歇根大学J. Holland教授的学生 Bagley在他的博士论文中首次提出了遗传算法这一术语,并讨论了遗传算法在博弈中的应用,但早期研究缺乏带有指导性的理论和计算工具的开拓。1975年, J. Holland等提出了对遗传算法理论研究极为重要的模式理论,出版了专著《自然系统和人工系统的适配》,在书中系统阐述了遗传算法的基本理论和方法,推动了遗传算法的发展。20世纪80年代后,遗传算法进入兴盛发展时期,被广泛应用于自动控制、生产计划、图像处理、机器人等研究领域。

2.1遗传算法的基本运算过程如下

(1)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体。

(2)个体评价:计算群体P(t)中各个个体的适应度

(3)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

(4)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。

(5)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

(6)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover);变异(mutation)。

2.2选择

从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproduction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法。 [2]

2.3交叉

在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。 [1]

2.4变异

变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:

a)实值变异。

b)二进制变异。

一般来说,变异算子操作的基本步骤如下:

a)对群中所有个体以事先设定的变异概率判断是否进行变异

b)对进行变异的个体随机选择变异位进行变异。

遗传算法引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。

2.5终止条件

当最优个体的适应度达到给定的阈值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。

三、数据拟合实例

3.1模型假设

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设即模型假设。已知一组观测数据(x, y)满足的函数关系为y=f(x),要求求出具体的解析式及解析式中的未知参数。

图2.观测数据

3.2模型建立

在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)

根据观测数据的形状建立数据之间的数学模型如下:

解析式为y=a*x^3+b,式中a和b为待求的参数

解析式的具体形式可以更加复杂,需要结合数据点的变化趋势来进行分析,未知参数的个数也可以根据具体方程式的形式来进行添加。(自已定义即可)

3.3模型求解

根据解析式及数据点在MATLAB中进行编程求解,求解结果如图:

图3.拟合结果图

GA算法经过200次迭代后的适应度曲线如下:

图4.适应度进化曲线

待求解的参数为:

求解的参数会在程序中给出。

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论
粒子群优化算法(Particle Swarm Optimization, PSO)和遗传算法(Genetic Algorithm, GA)是两种常用的元启发式优化算法,可以有效地解决旅行商问题(Traveling Salesman Problem, TSP)。在MATLAB,可以将这两种算法结合使用来解决TSP问题。 首先,我们需要将TSP问题转化为适应度函数的最小化问题。以城市序列作为遗传算法的个体编码,并采用总路径长度作为适应度函数,将TSP问题转化为寻找路径长度最小的情况。 其次,我们可以采用遗传算法的方式生成初始种群。通过随机生成城市序列,并在种群初始化一定数量的个体,得到初始粒子群。 然后,我们需要确定粒子群算法遗传算法的适应度函数、个体编码、交叉、变异、选择等参数。可以根据具体情况设置相应的参数。 在迭代过程,粒子群算法遗传算法可以交替进行。具体而言,每一代都通过粒子群算法更新个体位置和速度,并通过适应度函数计算每个个体的适应度值。然后,利用遗传算法的选择、交叉和变异操作来更新种群。 最后,在达到终止条件之前,不断进行迭代操作,直到找到最佳路径。 通过将粒子群算法遗传算法结合,能够充分利用两种算法的优点,提高求解TSP问题的效率和精度。 总之,利用MATLAB编程语言结合粒子群算法遗传算法解决TSP问题,可以通过转化问题为适应度函数的最小化问题,设置合适的参数,并利用两种算法的优点来提高求解效率和精度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小新.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值