C++洛谷P1031[NOIP2002 提高组] 均分纸牌

该博客介绍了如何使用C++编程解决NOIP2002提高组中的一道算法题,即在一定规则下通过最少的移动次数使所有纸牌堆数量相等。博主提供了详细的代码实现,包括输入输出格式、样例测试及解析,并展示了如何计算每堆纸牌的目标数量和进行纸牌转移。
摘要由CSDN通过智能技术生成

[NOIP2002 提高组] 均分纸牌

题目描述

N N N堆纸牌,编号分别为 1 , 2 , … , N 1,2,…,N 1,2,,N。每堆上有若干张,但纸牌总数必为 N N N 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 1 1 1 堆上取的纸牌,只能移到编号为 2 2 2 的堆上;在编号为 N N N 的堆上取的纸牌,只能移到编号为 N − 1 N-1 N1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N = 4 N=4 N=4 时, 4 4 4 堆纸牌数分别为 9 , 8 , 17 , 6 9,8,17,6 9,8,17,6

移动 3 3 3 次可达到目的:

  • 从第三堆取 4 4 4 张牌放到第四堆,此时每堆纸牌数分别为 9 , 8 , 13 , 10 9,8,13,10 9,8,13,10
  • 从第三堆取 3 3 3 张牌放到第二堆,此时每堆纸牌数分别为 9 , 11 , 10 , 10 9,11,10,10 9,11,10,10
  • 从第二堆取 1 1 1 张牌放到第一堆,此时每堆纸牌数分别为 10 , 10 , 10 , 10 10,10,10,10 10,10,10,10

输入格式

第一行共一个整数 N N N,表示纸牌堆数。
第二行共 N N N 个整数 A 1 , A 2 , ⋯   , A N A_1,A_2,\cdots,A_N A1,A2,,AN,表示每堆纸牌初始时的纸牌数。

输出格式

共一行,即所有堆均达到相等时的最少移动次数。

样例 #1

样例输入 #1

4
9 8 17 6

样例输出 #1

3

提示

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 100 1 \le N \le 100 1N100 1 ≤ A i ≤ 10000 1 \le A_i \le 10000 1Ai10000

【题目来源】

NOIP 2002 提高组第一题

代码:

#include<iostream>
#include<vector>
using namespace std;
int main()
{
	int n;
	vector<int> a;//向量组a记录牌堆
	cin >> n;
	
	//录入牌堆
	for (int i = 0; i < n; i++)
	{
		int num;
		cin >> num;
		a.push_back(num);
	}
	
	//计算每个牌堆的目标牌数k
	int sum = 0;
	int k;
	for (int i = 0; i < a.size(); i++)
	{
		sum += a[i];
	}
	k = sum / n;
	
    //求解纸牌转移方法
    //每个牌堆向右调出牌或调入牌,若操作前已满足目标则无需操作
	//前n-1个牌堆完成整理,则最后一个自然完成整理,无需再操作
	//若a[n]+a[n+1]<k,则先从a[n+2]取纸牌调入a[n+1],再从a[n+1]调入a[n]
	//a[n]+a[n+1]<k的情形可推至任意Σa[i]<k的情形
	//对于上述a[n]+a[n+1]<k的情形,代码虽然步数相同但算法不同,缺乏这一思想的体现
	int ans = 0;//ans记录操作步数
	for (int i = 0; i < n - 1; i++)
	{
		int temp = a[i];
		if (a[i] == k)
		{
			continue;
		}
		else
		{
			a[i] += k - a[i];
			a[i + 1] -= k - temp;
			++ans;
		}
	}
	cout << ans << endl;
	return 0;
}```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值