[NOIP2002 提高组] 均分纸牌
题目描述
有 N N N堆纸牌,编号分别为 1 , 2 , … , N 1,2,…,N 1,2,…,N。每堆上有若干张,但纸牌总数必为 N N N 的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为 1 1 1 堆上取的纸牌,只能移到编号为 2 2 2 的堆上;在编号为 N N N 的堆上取的纸牌,只能移到编号为 N − 1 N-1 N−1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N = 4 N=4 N=4 时, 4 4 4 堆纸牌数分别为 9 , 8 , 17 , 6 9,8,17,6 9,8,17,6。
移动 3 3 3 次可达到目的:
- 从第三堆取 4 4 4 张牌放到第四堆,此时每堆纸牌数分别为 9 , 8 , 13 , 10 9,8,13,10 9,8,13,10。
- 从第三堆取 3 3 3 张牌放到第二堆,此时每堆纸牌数分别为 9 , 11 , 10 , 10 9,11,10,10 9,11,10,10。
- 从第二堆取 1 1 1 张牌放到第一堆,此时每堆纸牌数分别为 10 , 10 , 10 , 10 10,10,10,10 10,10,10,10。
输入格式
第一行共一个整数
N
N
N,表示纸牌堆数。
第二行共
N
N
N 个整数
A
1
,
A
2
,
⋯
,
A
N
A_1,A_2,\cdots,A_N
A1,A2,⋯,AN,表示每堆纸牌初始时的纸牌数。
输出格式
共一行,即所有堆均达到相等时的最少移动次数。
样例 #1
样例输入 #1
4
9 8 17 6
样例输出 #1
3
提示
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 100 1 \le N \le 100 1≤N≤100, 1 ≤ A i ≤ 10000 1 \le A_i \le 10000 1≤Ai≤10000。
【题目来源】
NOIP 2002 提高组第一题
代码:
#include<iostream>
#include<vector>
using namespace std;
int main()
{
int n;
vector<int> a;//向量组a记录牌堆
cin >> n;
//录入牌堆
for (int i = 0; i < n; i++)
{
int num;
cin >> num;
a.push_back(num);
}
//计算每个牌堆的目标牌数k
int sum = 0;
int k;
for (int i = 0; i < a.size(); i++)
{
sum += a[i];
}
k = sum / n;
//求解纸牌转移方法
//每个牌堆向右调出牌或调入牌,若操作前已满足目标则无需操作
//前n-1个牌堆完成整理,则最后一个自然完成整理,无需再操作
//若a[n]+a[n+1]<k,则先从a[n+2]取纸牌调入a[n+1],再从a[n+1]调入a[n]
//a[n]+a[n+1]<k的情形可推至任意Σa[i]<k的情形
//对于上述a[n]+a[n+1]<k的情形,代码虽然步数相同但算法不同,缺乏这一思想的体现
int ans = 0;//ans记录操作步数
for (int i = 0; i < n - 1; i++)
{
int temp = a[i];
if (a[i] == k)
{
continue;
}
else
{
a[i] += k - a[i];
a[i + 1] -= k - temp;
++ans;
}
}
cout << ans << endl;
return 0;
}```