任务3:逻辑回归尝试
步骤1:导入sklearn中的逻辑回归;
步骤2:使用训练集和逻辑回归进行训练,并在测试集上进行预测;
步骤3:将步骤2预测的结果文件提交到比赛,截图分数;
步骤4:将训练集20%划分为验证集,在训练部分进行训练,在测试部分进行预测,调节逻辑回归的超参数;
步骤5:如果精度有提高,则重复步骤2和步骤3;如果没有提高,可以尝试树模型,重复2.3
采用树模型,高于逻辑回归
任务3:逻辑回归尝试
步骤1:导入sklearn中的逻辑回归;
步骤2:使用训练集和逻辑回归进行训练,并在测试集上进行预测;
步骤3:将步骤2预测的结果文件提交到比赛,截图分数;
步骤4:将训练集20%划分为验证集,在训练部分进行训练,在测试部分进行预测,调节逻辑回归的超参数;
步骤5:如果精度有提高,则重复步骤2和步骤3;如果没有提高,可以尝试树模型,重复2.3
采用树模型,高于逻辑回归