水果分类程序:基于深度学习的水果识别

背景

水果分类在水果产业和社会经济发展中具有重要意义。目前,水果分类主要依赖人工分类,但这种方法浪费大量人力物力且效率低。随着人工智能和机器视觉的发展,基于深度学习的水果分类方法具有重要意义和广泛的应用价值。

流程

  1. 数据准备

    • 在这一部分,首先设置了一些参数,如批处理大小、训练周期、标签种类数和学习率。
    • 定义了数据预处理操作,包括将图像转换为张量,调整大小、中心裁剪和标准化。
  2. 数据集创建

    • 遍历了水果数据集目录,收集了图像路径和对应的标签。
    • 随机打乱数据集并将数据保存为CSV文件。
  3. 数据加载与划分

    • 读取了CSV文件,将数据加载到内存中。
    • 把数据集划分为训练集和验证集。
    • 创建了一个自定义数据集类,这个类包括了数据加载和转换操作。
  4. 模型构建

    • 在这一部分,定义了一个卷积神经网络(CNN)模型。这个模型包括了卷积层、池化层和全连接层。
    • 还创建了一个模型对象并配置了优化器、损失函数和评估指标。
  5. 模型训练

    • 为训练数据集和验证数据集创建了数据加载器。
    • 使用模型对象启动了完整的模型训练流程,包括多个训练周期。
    • 最后,保存了训练好的模型,以便后续的使用。
  6. 模型测试

    • 这部分准备了测试数据集。
    • 使用保存的模型进行图像分类预测,并输出了预测结果。

准备
 

# 查看当前挂载的数据集目录, 该目录下的变更重启环境后会自动还原
# View dataset directory. 
# This directory will be recovered automatically after resetting environment. 
!ls /home/aistudio/data
# 查看工作区文件, 该目录下的变更将会持久保存. 请及时清理不必要的文件, 避免加载过慢.
# View personal work directory. 
# All changes under this directory will be kept even after reset. 
# Please clean unnecessary files in time to speed up environment loading. 
!ls /home/aistudio/work
# 如果需要进行持久化安装, 需要使用持久化路径, 如下方代码示例:
# If a persistence installation is required, 
# you need to use the persistence path as the following: 
!mkdir /home/aistudio/external-libraries
!pip install beautifulsoup4 -t /home/aistudio/external-libraries
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: 
# Also add the following code, 
# so that every time the environment (kernel) starts, 
# just run the following code: 
import sys 
sys.path.append('/home/aistudio/external-libraries')
import paddle
print(sys.version)

 对应关系: torch.nn--paddle.nn torchvision.transforms--paddle.vision.transforms torchvision.datasets--paddle.vision.datasets torch.utils.data--paddle.io.DataLoader

 导入包

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值