创建新的python环境
进入cmd,输入指令:
conda create -n env_name python=3.x
env_name是给这个环境起的名字,python=3.x是该环境的python版本,python版本比目前安装的python版本低即可,并不要求与安装的python版本完全一致。
安装完成后弹出一条指令:
conda activate env_name
输入该指令即可进入已有的python环境。
conda env list
该指令可查看已有的python环境。
conda deactivate
该指令可推出当前python环境。
python包基本安装方法
安装单个包
安装单个的包,非批量安装,例如安装numpy。
(my_yolo) C:\Users\WINDOWS>pip install numpy
安装的是numpy目前的最高版本,目前是2.2.2,如果要求用numpy的老版本,这种方法就不行了。
如何知道目前numpy有哪些版本?可以安装哪些版本?
先安装一个很大的版本号,报错后就会提示可安装的版本,在里面找需要的版本安装即可。
(my_yolo) C:\Users\WINDOWS>pip install numpy==1.30.0
安装numpy1.19.1报错了,因为这个包没有现成的文件,程序直接就会去下载代码然后编译,编译的时候很容易出错(电脑上没有编译器;缺少编译时需要的其他依赖)。 遇到这种情况一种方法是去下载需要的编译器和依赖,另一种方法是直接试试别的版本有没有现成的文件。
验证numpy有没有安装成功,能不能被调用。
numpy安装成功。
pytorch工程环境配置
用requirements.txt文件配置环境
首先更新nvidia显卡驱动到最新版本。
查看显卡适配的cuda版本:
nvidia-smi
利用requirements文件进行配置。
requirements.txt文件中标明需要的包的最低版本,若想要安装特定版本的包,需要把相应的>改为=。
首先进入文件目录,本次requirements.txt文件放在桌面上。
(my_yolo) C:\Users\WINDOWS>cd Desktop
查看桌面的文件目录。
(my_yolo) C:\Users\WINDOWS\Desktop>dir
利用requirements.txt文件安装各个包,但需要对文件进行一定更改,因为torch和torchvision这两个包几乎是不可能自动安装成功的,因此要在文件中刚给他们两个包前面加#将其屏蔽掉。#后面要加一个空格。
(my_yolo) C:\Users\WINDOWS\Desktop>pip install -r requirements.txt
requirements.txt文件
# pip install -r requirements.txt
# Base ----------------------------------------
matplotlib==3.2.2
numpy==1.18.5
opencv-python==4.4.0.40
Pillow==7.1.2
PyYAML==5.3.1
requests==2.23.0
scipy==1.4.1
# torch==1.7.0
# torchvision==0.8.1
tqdm==4.41.0
# Logging -------------------------------------
tensorboard==2.4.1
# wandb
# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export --------------------------------------
# coremltools>=4.1 # CoreML export
# onnx>=1.9.0 # ONNX export
# onnx-simplifier>=0.3.6 # ONNX simplifier
# scikit-learn==0.19.2 # CoreML quantization
# tensorflow>=2.4.1 # TFLite export
# tensorflowjs>=3.9.0 # TF.js export
# Extras --------------------------------------
# albumentations>=1.0.3
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
# pycocotools>=2.0 # COCO mAP
# roboflow
thop # FLOPs computation
创建一个txt文件命名为 requirements.txt即可。
torch的安装
进入torch官网。
点击Prvious version of Pytorch寻找需要的torch版本。
conda安装时候我一直报错,安装不上。用pip安装才成功。
本次安装torch1.8.1版本。
cuda版本选择时,指令里的版本要比前文中查得的显卡最高cuda版本低,我的卡是4060ti,cuda12.5,因此选择cuda版本低于12.5的就行。这里选一个高的,cuda11.1。
安装完成之后进入python进行验证。
(my_yolo) C:\Users\WINDOWS\Desktop>python
>>> import torch
>>> torch.cuda.is_available()
pycharm配置解释器
配置conda
在设置中的项目栏下点击python解释器,在右侧进入添加解释器,添加本地解释器。
在conda环境栏中选择conda可执行文件conda.bat,目录在D:\anaconda3\condabin\conda.bat即anaconda3的安装目录下,不同的安装位置在自己的安装文件夹里找conda.bat即可。之后点击加载环境。
这里一定是这个conda.bat文件才行,旧版本是python.exe文件,选了没用配置不上。
下面的使用现有环境,点击下拉展开,里面的就是我们创建好的虚拟环境。
配置完成后,右下角就显示当前的环境名称,想换的时候直接换就行。
创建新项目。
环境什么都不选,直接用默认读出来的anaconda3,进去之后右下角会显示anaconda3,但其实这个时候pycharm是没有加载上环境的,软件只是这么显示一下,老版本的话右下角什么都不显示,新版本2024版的才会显示这个。
配置解释器
配置解释器的时候,打开设置,找到项目,点击python解释器,在右侧进入添加解释器,添加本地解释器。这里跟前面流程一样。
在添加本地解释器对话框里选择系统解释器,然后点解释器后面的三个点。
在文件目录中选择anaconda3安装目录下的envs,在里面找到要配置的环境的名字,点开后里面右有个tools文件夹,选择tools文件夹中的python.exe。
检验是否配置成功,在python控制台中输入代码:
import torch
torch.cuda.is_available()
True
若返回结果为True,说明torch配置成功。