深度学习配环境——PyCharm+pytorch,新手记录从头到成功的步骤

0、前提篇

以前一直没有接触过python,然后读研很多论文在仿真模块用到了深度学习代码,所以要搭建环境并最终跑一跑Github上的开源代码。
需要用到:Python 集成开发环境深度学习框架(如 PyTorch/TensorFlow)

Python 集成开发环境

PyCharm 是一款由 JetBrains 公司开发的 Python 集成开发环境(IDE integrated development environment)

深度学习框架(如 PyTorch/TensorFlow)

存在NVIDIA显卡(N卡)的主机,安装GPU版本的PyTorch。(为了这个英伟达显卡,我还去换了新电脑——Lenovo拯救者Y7000P)
如果电脑是集成显卡(旧电脑就是),就要安装CPU版本的PyTorch(但据说CPU版本的速度慢,跑不动)
注:torch 是一个库,pytorch 就是在 python 上的 torch。

1、安装篇

1、先按照这个链接 博客文章1 进行Python + PyCharm的安装。
2、再按照这个博客文章2进行配置PyTorch环境。(VIP浏览,PDD花一块钱买个浏览或者我下面也写着有,即1.1-1.2是对这一步的解释,上面的1、这一步看按博客文章1操作即可)

1.1安装cuda

Compute Unified Device Architecture(计算统一设备架构)。这是由NVIDIA(英伟达)推出的并行计算平台和编程模型,允许开发者利用NVIDIA GPU的强大计算能力进行通用计算
作用:
a、GPU 加速计算:将 CPU 的串行任务转移到 GPU 上并行处理,大幅提升计算速度(尤其适合矩阵运算、大规模数据处理)
b、支持深度学习框架:PyTorch、TensorFlow 等依赖 CUDA 实现 GPU 加速训练和推理。(PyTorch/TensorFlow 的 GPU 版本需 CUDA 支持才能调用显卡。)
(1) 安装条件
硬件:NVIDIA 显卡(如 RTX 4060)
软件:1、安装 NVIDIA 显卡驱动(一般电脑自带,只是版本可能不是最新的)
win+r——cmd——nvidia-smi # 查看驱动版本和该驱动下最高支持的CUDA版本
得到表格为 Driver Version: 576.02 CUDA Version: 12.9

版本向下兼容,即按照开发库一般不建议使用最新版本的原则,此处我们的显卡及驱动最高支持cuda12.9,我们选择12.8版本来完成开发工作。

用自带的软件完成驱动的更新,而不用从官网上下载
用自带的软件完成驱动的更新(如上图的GeForce Experience,在最小栏搜索中输入,一般电脑自带的),而不用从官网上下载最新的驱动(不过在博客文章3中详细写了如何在官网上安装对应驱动)
在这里插入图片描述

更新:GeForce Experience最新版本是2024年的3.28。目前更新为NVIDIA app,在这里边更新驱动

2、下载 CUDA Toolkit(版本需与深度学习框架匹配)
按照博客文章4安装CUDA。
验证安装 输入win+r——cmd——nvcc -V # 检查CUDA 编译器版本
3、(可选)安装 cuDNN(加速神经网络运算)
(2)总结
CUDA 是“理论”,CUDA Toolkit 是“实践工具”。
开发 GPU 加速程序时:写代码遵循 CUDA 模型 → 用 Toolkit 编译调试 → 依赖驱动在硬件执行。
安装时需保持 驱动、Toolkit、深度学习框架(pytorch)版本一致!
CUDA 是解锁 GPU 计算能力的钥匙,尤其对深度学习至关重要。安装时需注意硬件兼容性版本匹配

1.2安装pytorch(GPU版本)

1、在pycharm新建项目的main.py中终端输入CDUA官网下载网址下的命令
命令

1.可以看到这里cuda可选的版本很少,但是没关系,选择与本机cuda版本接近的就行。我下载的cuda版本是12.8,此处选择的是cuda12.6,安装之后也能成功运行。
2.此处我选择的是包是Pip,虽然我前面选择的环境是virtualenv不是pip,但pip命令在virtualenv环境下自动就可运行。
更新(2025.04.27):网址更新到了12.8可以选了

在这里插入图片描述

回车,结果发现出问题了,显示 ERROR: Could not find a version that satisfies the requirement wheel (from versions: none)。查询后有人提到可能是python版本过高导致。看了pytorch官网也提到目前明确支持的是3.12。
我下的3.13.2
问了deepseek也是说,目前 Windows 用户应优先使用 Python 3.12 + PyTorch 2.3.0 组合
解决方法:卸载3.13.2重装3.12.10。继续重建项目重建main.py。然后打开终端复制前边官网的命令,回车。
结果:果然可以了!!静候安装,需要很长时间。
等待安装中
最后结果是这个
2、验证安装是否成功
在main.py中输入

import torch  #导入PyTorch库
print(torch.cuda.device_count())  #打印可用的GPU设备数量
print(torch.cuda.is_available()) #打印是否可以使用CUDA,即是否可以在GPU上运行计算
print(torch.__version__) #打印torch的版本

成功结果图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值