吴恩达深度学习课程编程作业学习

在开始之前,首先声明本文参考https://blog.csdn.net/u013733326/article/details/79639509,我基于他的文章资料和代码学习实践,并发表这篇博客来记录学习中的笔记和自己的理解,如有不妥的地方欢迎大家指正。


作业要求:

  • 数据集:包含209张64x64像素的训练图像和50张64x64像素的测试图像,图像内容为猫和非猫。
  • 目标:构建一个简单的神经网络模型,用于识别图像中是否包含猫。
  • 实现步骤:
  1. 数据加载与预处理
  2. 模型定义与初始化
  3. 前向传播与损失计算
  4. 反向传播与参数更新
  5. 模型训练与预测

使用说明

环境要求:

  • Python 3.6.2
  • 必要的Python库:numpy, h5py, matplotlib, lr_utils

文件结构:

  • datasets/:包含训练和测试数据集的文件夹。
  • lr_utils.py:用于加载数据集的辅助函数。
  • main.ipynb:Jupyter Notebook文件,包含完整的代码实现。

上述三个文件及文件夹要在同一级目录下。 


完成作业遇到的bug: 

因为我是第一次使用 Jupyter Notebook,所以在运行时出现问题:No module named 'numpy',根据查阅资料,尝试使用Anaconda prompt输入如下代码进行下载:

pip install numpy

下载完成后重新运行,依旧存在No module named 'numpy'后面看到有人提到可能原因是使用的python和anaconda的python非同一个,我就尝试在Jupyter Notebook内输入:

import os 
os.sys.executable

 

然后打开anaconda prompt,如下图输入路径并安装numpy(此次路径与自己电脑输出要一致);

D:\\anaconda\\python.exe -m pip install numpy

前面报错解决,但是显示Requirement already satisfied: numpy in d:\anaconda\lib\site-packages (1.26.4),说明该库以及存在,代码依旧跑不起来,后面通过查阅资料,发现是使用anaconda不需要导第三方库,所以该安装包自带numpy库,我们在运行时发现仍然没有numpy库,只需要把numpy库安装在我们运行的python文件里行了。输入下面命令即可:

pip install --target=目标路径  库名
pip install --target=d:\anaconda\lib\site-packages numpy #每个人目标路径不一样,看报错处所给

 作业代码学习: 

主程序代码中用到的库:

import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset

  • numpy :是用Python进行科学计算的基本软件包。
  • h5py:是与H5文件中存储的数据集进行交互的常用软件包。
  • matplotlib:是一个著名的库,用于在Python中绘制图表。
  • lr_utils :在本文的资料包里,一个加载资料包里面的数据的简单功能的库。

lr_utils.py代码如下 :

import numpy as np  # 导入numpy库,并简称为np。numpy是Python中用于科学计算的基础库,提供了高性能的多维数组对象及相关工具。  
import h5py  # 导入h5py库。h5py是Python中用于访问HDF5文件的库,HDF5是一种用于存储和组织大量数据的文件格式。  
  
def load_dataset():  # 定义一个名为load_dataset的函数,该函数不接受任何参数。  
    # 加载训练数据集  
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")  # 使用h5py.File打开训练数据集文件,文件路径为'datasets/train_catvnoncat.h5',模式为"r"(只读)。  
    train_set_x_orig = np.array(train_dataset["train_set_x"][:])  # 从训练数据集中读取图像数据,并将其转换为numpy数组。这里的[:]表示读取该数据集的所有数据。  
    train_set_y_orig = np.array(train_dataset["train_set_y"][:])  # 从训练数据集中读取标签数据,同样转换为numpy数组。  
  
    # 加载测试数据集  
    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")  # 使用h5py.File打开测试数据集文件,文件路径为'datasets/test_catvnoncat.h5',模式为"r"(只读)。  
    test_set_x_orig = np.array(test_dataset["test_set_x"][:])  # 从测试数据集中读取图像数据,转换为numpy数组。  
    test_set_y_orig = np.array(test_dataset["test_set_y"][:])  # 从测试数据集中读取标签数据,转换为numpy数组。  
  
    # 加载类别列表  
    classes = np.array(test_dataset["list_classes"][:])  # 从测试数据集中读取类别列表,转换为numpy数组。虽然这里是从测试数据集中读取,但类别列表通常对训练集和测试集都是相同的。  
  
    # 调整标签的形状  
    # 在某些机器学习库中,标签需要是二维数组的形式,因此这里将标签的形状从(m,)调整为(1, m),其中m是样本数量。  
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))  # 调整训练集标签的形状。  
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))  # 调整测试集标签的形状。  
  
    # 返回加载的数据集  
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes  # 函数返回训练集的图像数据和标签、测试集的图像数据和标签,以及类别列表。

这段代码的主要功能是加载一个关于猫和非猫分类的数据集,该数据集被存储在两个HDF5文件中,分别包含训练集和测试集的数据。通过读取这些文件,代码将图像数据和标签加载到内存中,并转换为numpy数组的形式,以便后续进行机器学习或深度学习模型的训练和测试。同时,代码还从测试数据集中读取了类别列表,虽然这个列表对于训练集和测试集都是相同的,但通常只在测试阶段使用它来解读模型的预测结果。最后,代码对标签的形状进行了调整,以满足某些机器学习库的输入要求。

把这些数据加载到主程序里(主程序代码):

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset()

可以通过如下代码查看加载的文件里的图片:

index = 25
plt.imshow(train_set_x_orig[index])
#print("train_set_y=" + str(train_set_y)) #你也可以看一下训练集里面的标签是什么样的。

查看一下我们加载的图像数据集具体情况,我对以下参数做出解释:

  • m_train :训练集里图片的数量。
  • m_test :测试集里图片的数量。
  • num_px : 训练、测试集里面的图片的宽度和高度(均为64x64)。
# 计算训练集中图片的数量  
m_train = train_set_y.shape[1]  # 这里假设train_set_y已经被加载并且是二维的,其中shape[1]表示第二维的大小,即训练集中的图片数量。  
  
# 计算测试集中图片的数量  
m_test = test_set_y.shape[1]  # 同样,这里假设test_set_y是二维的,shape[1]表示测试集中的图片数量。  
  
# 计算每张图片的宽度和高度(假设它们是相等的,即图片是正方形的)  
num_px = train_set_x_orig.shape[1]  # 这里假设train_set_x_orig是三维的,其中shape[1]表示图片的宽度(或高度),因为图片是正方形的,所以宽度和高度相等。  
  
# 输出加载的数据集的具体信息  
print("训练集的数量: m_train = " + str(m_train))  # 打印训练集中的图片数量。  
print("测试集的数量 : m_test = " + str(m_test))  # 打印测试集中的图片数量。  
print("每张图片的宽/高 : num_px = " + str(num_px))  # 打印每张图片的宽度(或高度),因为是正方形,所以宽高相等。  
print("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")  # 打印每张图片的总大小,包括宽度、高度和颜色通道数(3表示RGB)。  
print("训练集_图片的维数 : " + str(train_set_x_orig.shape))  # 打印训练集图片的维度信息。  
print("训练集_标签的维数 : " + str(train_set_y.shape))  # 打印训练集标签的维度信息。  
print("测试集_图片的维数: " + str(test_set_x_orig.shape))  # 打印测试集图片的维度信息。  
print("测试集_标签的维数: " + str(test_set_y.shape))  # 打印测试集标签的维度信息。

 将形状(a,b,c,d)的矩阵X平铺成形状(b * c * d,a)的矩阵X_flatten

#X_flatten = X.reshape(X.shape [0],-1).T #X.T是X的转置
#将训练集的维度降低并转置。
train_set_x_flatten  = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
#将测试集的维度降低并转置。
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

 让标准化的数据位于[0,1]之间,现在标准化我们的数据集

train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255

*建立神经网络的主要步骤是:

定义模型结构(例如输入特征的数量)

初始化模型的参数

循环:

3.1 计算当前损失(正向传播)

3.2 计算当前梯度(反向传播)

3.3 更新参数(梯度下降)

现在构建sigmoid(),需要使用 sigmoid(w ^ T x + b) 计算来做出预测;

def sigmoid(z):
    """
    参数:
        z  - 任何大小的标量或numpy数组。
    
    返回:
        s  -  sigmoid(z)
    """
    s = 1 / (1 + np.exp(-z))
    return s

 初始化我们需要的参数w和b;

def initialize_with_zeros(dim):
    """
        此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。
        
        参数:
            dim  - 我们想要的w矢量的大小(或者这种情况下的参数数量)
        
        返回:
            w  - 维度为(dim,1)的初始化向量。
            b  - 初始化的标量(对应于偏差)
    """
    w = np.zeros(shape = (dim,1))
    b = 0
    #使用断言来确保我要的数据是正确的
    assert(w.shape == (dim, 1)) #w的维度是(dim,1)
    assert(isinstance(b, float) or isinstance(b, int)) #b的类型是float或者是int
    
    return (w , b)

实现一个计算成本函数及其渐变的函数propagate(); 

def propagate(w, b, X, Y):
	"""
    实现前向和后向传播的成本函数及其梯度。
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 矩阵类型为(num_px * num_px * 3,训练数量)
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)

    返回:
        cost- 逻辑回归的负对数似然成本
        dw  - 相对于w的损失梯度,因此与w相同的形状
        db  - 相对于b的损失梯度,因此与b的形状相同
    """
	m = X.shape[1]
    
    #正向传播
    A = sigmoid(np.dot(w.T,X) + b) #计算激活值,请参考公式2。
    cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) #计算成本,请参考公式3和4。
    
    #反向传播
    dw = (1 / m) * np.dot(X, (A - Y).T) #请参考视频中的偏导公式。
    db = (1 / m) * np.sum(A - Y) #请参考视频中的偏导公式。
	
	#使用断言确保我的数据是正确的
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    
    #创建一个字典,把dw和db保存起来。
    grads = {
                "dw": dw,
                "db": db
             }
    return (grads , cost)

使用渐变下降更新参数,目标是通过最小化成本函数 J JJ 来学习 w ww和b bb 。对于参数 θ \thetaθ ,更新规则是 $ \theta = \theta - \alpha \text{ } d\theta$,其中 α \alphaα 是学习率;

def optimize(w , b , X , Y , num_iterations , learning_rate , print_cost = False):
    """
    此函数通过运行梯度下降算法来优化w和b
    
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数组。
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量)
        num_iterations  - 优化循环的迭代次数
        learning_rate  - 梯度下降更新规则的学习率
        print_cost  - 每100步打印一次损失值
    
    返回:
        params  - 包含权重w和偏差b的字典
        grads  - 包含权重和偏差相对于成本函数的梯度的字典
        成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。
    
    提示:
    我们需要写下两个步骤并遍历它们:
        1)计算当前参数的成本和梯度,使用propagate()。
        2)使用w和b的梯度下降法则更新参数。
    """
    
    costs = []
    
    for i in range(num_iterations):
        
        grads, cost = propagate(w, b, X, Y)
        
        dw = grads["dw"]
        db = grads["db"]
        
        w = w - learning_rate * dw
        b = b - learning_rate * db
        
        #记录成本
        if i % 100 == 0:
            costs.append(cost)
        #打印成本数据
        if (print_cost) and (i % 100 == 0):
            print("迭代的次数: %i , 误差值: %f" % (i,cost))
        
    params  = {
                "w" : w,
                "b" : b }
    grads = {
            "dw": dw,
            "db": db } 
    return (params , grads , costs)

 将预测值存储在向量Y_prediction中;

def predict(w , b , X ):
    """
    使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,
    
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数据
    
    返回:
        Y_prediction  - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量)
    
    """
    
    m  = X.shape[1] #图片的数量
    Y_prediction = np.zeros((1,m)) 
    w = w.reshape(X.shape[0],1)
    
    #计预测猫在图片中出现的概率
    A = sigmoid(np.dot(w.T , X) + b)
    for i in range(A.shape[1]):
        #将概率a [0,i]转换为实际预测p [0,i]
        Y_prediction[0,i] = 1 if A[0,i] > 0.5 else 0
    #使用断言
    assert(Y_prediction.shape == (1,m))
    
    return Y_prediction

 整合到model()函数;

def model(X_train , Y_train , X_test , Y_test , num_iterations = 2000 , learning_rate = 0.5 , print_cost = False):
    """
    通过调用之前实现的函数来构建逻辑回归模型
    
    参数:
        X_train  - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
        Y_train  - numpy的数组,维度为(1,m_train)(矢量)的训练标签集
        X_test   - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
        Y_test   - numpy的数组,维度为(1,m_test)的(向量)的测试标签集
        num_iterations  - 表示用于优化参数的迭代次数的超参数
        learning_rate  - 表示optimize()更新规则中使用的学习速率的超参数
        print_cost  - 设置为true以每100次迭代打印成本
    
    返回:
        d  - 包含有关模型信息的字典。
    """
    w , b = initialize_with_zeros(X_train.shape[0])
    
    parameters , grads , costs = optimize(w , b , X_train , Y_train,num_iterations , learning_rate , print_cost)
    
    #从字典“参数”中检索参数w和b
    w , b = parameters["w"] , parameters["b"]
    
    #预测测试/训练集的例子
    Y_prediction_test = predict(w , b, X_test)
    Y_prediction_train = predict(w , b, X_train)
    
    #打印训练后的准确性
    print("训练集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100) ,"%")
    print("测试集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100) ,"%")
    
    d = {
            "costs" : costs,
            "Y_prediction_test" : Y_prediction_test,
            "Y_prediciton_train" : Y_prediction_train,
            "w" : w,
            "b" : b,
            "learning_rate" : learning_rate,
            "num_iterations" : num_iterations }
    return d

可视化;

#绘制图
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

可视化比较,比较一下我们模型的学习曲线和几种学习速率的选择。

learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值