在开始之前,首先声明本文参考https://blog.csdn.net/u013733326/article/details/79639509,我基于他的文章资料和代码学习实践,并发表这篇博客来记录学习中的笔记和自己的理解,如有不妥的地方欢迎大家指正。
作业要求:
- 数据集:包含209张64x64像素的训练图像和50张64x64像素的测试图像,图像内容为猫和非猫。
- 目标:构建一个简单的神经网络模型,用于识别图像中是否包含猫。
- 实现步骤:
- 数据加载与预处理
- 模型定义与初始化
- 前向传播与损失计算
- 反向传播与参数更新
- 模型训练与预测
使用说明
环境要求:
- Python 3.6.2
- 必要的Python库:numpy, h5py, matplotlib, lr_utils
文件结构:
- datasets/:包含训练和测试数据集的文件夹。
- lr_utils.py:用于加载数据集的辅助函数。
- main.ipynb:Jupyter Notebook文件,包含完整的代码实现。
上述三个文件及文件夹要在同一级目录下。
完成作业遇到的bug:
因为我是第一次使用 Jupyter Notebook,所以在运行时出现问题:No module named 'numpy',根据查阅资料,尝试使用Anaconda prompt输入如下代码进行下载:
pip install numpy
下载完成后重新运行,依旧存在No module named 'numpy'。后面看到有人提到可能原因是使用的python和anaconda的python非同一个,我就尝试在Jupyter Notebook内输入:
import os
os.sys.executable
然后打开anaconda prompt,如下图输入路径并安装numpy(此次路径与自己电脑输出要一致);
D:\\anaconda\\python.exe -m pip install numpy
前面报错解决,但是显示Requirement already satisfied: numpy in d:\anaconda\lib\site-packages (1.26.4),说明该库以及存在,代码依旧跑不起来,后面通过查阅资料,发现是使用anaconda不需要导第三方库,所以该安装包自带numpy库,我们在运行时发现仍然没有numpy库,只需要把numpy库安装在我们运行的python文件里行了。输入下面命令即可:
pip install --target=目标路径 库名
pip install --target=d:\anaconda\lib\site-packages numpy #每个人目标路径不一样,看报错处所给
作业代码学习:
主程序代码中用到的库:
import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset
- numpy :是用Python进行科学计算的基本软件包。
- h5py:是与H5文件中存储的数据集进行交互的常用软件包。
- matplotlib:是一个著名的库,用于在Python中绘制图表。
- lr_utils :在本文的资料包里,一个加载资料包里面的数据的简单功能的库。
lr_utils.py
代码如下 :
import numpy as np # 导入numpy库,并简称为np。numpy是Python中用于科学计算的基础库,提供了高性能的多维数组对象及相关工具。
import h5py # 导入h5py库。h5py是Python中用于访问HDF5文件的库,HDF5是一种用于存储和组织大量数据的文件格式。
def load_dataset(): # 定义一个名为load_dataset的函数,该函数不接受任何参数。
# 加载训练数据集
train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r") # 使用h5py.File打开训练数据集文件,文件路径为'datasets/train_catvnoncat.h5',模式为"r"(只读)。
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # 从训练数据集中读取图像数据,并将其转换为numpy数组。这里的[:]表示读取该数据集的所有数据。
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # 从训练数据集中读取标签数据,同样转换为numpy数组。
# 加载测试数据集
test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r") # 使用h5py.File打开测试数据集文件,文件路径为'datasets/test_catvnoncat.h5',模式为"r"(只读)。
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # 从测试数据集中读取图像数据,转换为numpy数组。
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # 从测试数据集中读取标签数据,转换为numpy数组。
# 加载类别列表
classes = np.array(test_dataset["list_classes"][:]) # 从测试数据集中读取类别列表,转换为numpy数组。虽然这里是从测试数据集中读取,但类别列表通常对训练集和测试集都是相同的。
# 调整标签的形状
# 在某些机器学习库中,标签需要是二维数组的形式,因此这里将标签的形状从(m,)调整为(1, m),其中m是样本数量。
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) # 调整训练集标签的形状。
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) # 调整测试集标签的形状。
# 返回加载的数据集
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes # 函数返回训练集的图像数据和标签、测试集的图像数据和标签,以及类别列表。
这段代码的主要功能是加载一个关于猫和非猫分类的数据集,该数据集被存储在两个HDF5文件中,分别包含训练集和测试集的数据。通过读取这些文件,代码将图像数据和标签加载到内存中,并转换为numpy数组的形式,以便后续进行机器学习或深度学习模型的训练和测试。同时,代码还从测试数据集中读取了类别列表,虽然这个列表对于训练集和测试集都是相同的,但通常只在测试阶段使用它来解读模型的预测结果。最后,代码对标签的形状进行了调整,以满足某些机器学习库的输入要求。
把这些数据加载到主程序里(主程序代码):
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset()
可以通过如下代码查看加载的文件里的图片:
index = 25
plt.imshow(train_set_x_orig[index])
#print("train_set_y=" + str(train_set_y)) #你也可以看一下训练集里面的标签是什么样的。
查看一下我们加载的图像数据集具体情况,我对以下参数做出解释:
- m_train :训练集里图片的数量。
- m_test :测试集里图片的数量。
- num_px : 训练、测试集里面的图片的宽度和高度(均为64x64)。
# 计算训练集中图片的数量
m_train = train_set_y.shape[1] # 这里假设train_set_y已经被加载并且是二维的,其中shape[1]表示第二维的大小,即训练集中的图片数量。
# 计算测试集中图片的数量
m_test = test_set_y.shape[1] # 同样,这里假设test_set_y是二维的,shape[1]表示测试集中的图片数量。
# 计算每张图片的宽度和高度(假设它们是相等的,即图片是正方形的)
num_px = train_set_x_orig.shape[1] # 这里假设train_set_x_orig是三维的,其中shape[1]表示图片的宽度(或高度),因为图片是正方形的,所以宽度和高度相等。
# 输出加载的数据集的具体信息
print("训练集的数量: m_train = " + str(m_train)) # 打印训练集中的图片数量。
print("测试集的数量 : m_test = " + str(m_test)) # 打印测试集中的图片数量。
print("每张图片的宽/高 : num_px = " + str(num_px)) # 打印每张图片的宽度(或高度),因为是正方形,所以宽高相等。
print("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)") # 打印每张图片的总大小,包括宽度、高度和颜色通道数(3表示RGB)。
print("训练集_图片的维数 : " + str(train_set_x_orig.shape)) # 打印训练集图片的维度信息。
print("训练集_标签的维数 : " + str(train_set_y.shape)) # 打印训练集标签的维度信息。
print("测试集_图片的维数: " + str(test_set_x_orig.shape)) # 打印测试集图片的维度信息。
print("测试集_标签的维数: " + str(test_set_y.shape)) # 打印测试集标签的维度信息。
将形状(a,b,c,d)的矩阵X平铺成形状(b * c * d,a)的矩阵X_flatten
#X_flatten = X.reshape(X.shape [0],-1).T #X.T是X的转置
#将训练集的维度降低并转置。
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
#将测试集的维度降低并转置。
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
让标准化的数据位于[0,1]之间,现在标准化我们的数据集
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255
*建立神经网络的主要步骤是:
定义模型结构(例如输入特征的数量)
初始化模型的参数
循环:
3.1 计算当前损失(正向传播)
3.2 计算当前梯度(反向传播)
3.3 更新参数(梯度下降)
现在构建sigmoid(),需要使用 sigmoid(w ^ T x + b) 计算来做出预测;
def sigmoid(z):
"""
参数:
z - 任何大小的标量或numpy数组。
返回:
s - sigmoid(z)
"""
s = 1 / (1 + np.exp(-z))
return s
初始化我们需要的参数w和b;
def initialize_with_zeros(dim):
"""
此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。
参数:
dim - 我们想要的w矢量的大小(或者这种情况下的参数数量)
返回:
w - 维度为(dim,1)的初始化向量。
b - 初始化的标量(对应于偏差)
"""
w = np.zeros(shape = (dim,1))
b = 0
#使用断言来确保我要的数据是正确的
assert(w.shape == (dim, 1)) #w的维度是(dim,1)
assert(isinstance(b, float) or isinstance(b, int)) #b的类型是float或者是int
return (w , b)
实现一个计算成本函数及其渐变的函数propagate();
def propagate(w, b, X, Y):
"""
实现前向和后向传播的成本函数及其梯度。
参数:
w - 权重,大小不等的数组(num_px * num_px * 3,1)
b - 偏差,一个标量
X - 矩阵类型为(num_px * num_px * 3,训练数量)
Y - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)
返回:
cost- 逻辑回归的负对数似然成本
dw - 相对于w的损失梯度,因此与w相同的形状
db - 相对于b的损失梯度,因此与b的形状相同
"""
m = X.shape[1]
#正向传播
A = sigmoid(np.dot(w.T,X) + b) #计算激活值,请参考公式2。
cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) #计算成本,请参考公式3和4。
#反向传播
dw = (1 / m) * np.dot(X, (A - Y).T) #请参考视频中的偏导公式。
db = (1 / m) * np.sum(A - Y) #请参考视频中的偏导公式。
#使用断言确保我的数据是正确的
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
#创建一个字典,把dw和db保存起来。
grads = {
"dw": dw,
"db": db
}
return (grads , cost)
使用渐变下降更新参数,目标是通过最小化成本函数 J JJ 来学习 w ww和b bb 。对于参数 θ \thetaθ ,更新规则是 $ \theta = \theta - \alpha \text{ } d\theta$,其中 α \alphaα 是学习率;
def optimize(w , b , X , Y , num_iterations , learning_rate , print_cost = False):
"""
此函数通过运行梯度下降算法来优化w和b
参数:
w - 权重,大小不等的数组(num_px * num_px * 3,1)
b - 偏差,一个标量
X - 维度为(num_px * num_px * 3,训练数据的数量)的数组。
Y - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量)
num_iterations - 优化循环的迭代次数
learning_rate - 梯度下降更新规则的学习率
print_cost - 每100步打印一次损失值
返回:
params - 包含权重w和偏差b的字典
grads - 包含权重和偏差相对于成本函数的梯度的字典
成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。
提示:
我们需要写下两个步骤并遍历它们:
1)计算当前参数的成本和梯度,使用propagate()。
2)使用w和b的梯度下降法则更新参数。
"""
costs = []
for i in range(num_iterations):
grads, cost = propagate(w, b, X, Y)
dw = grads["dw"]
db = grads["db"]
w = w - learning_rate * dw
b = b - learning_rate * db
#记录成本
if i % 100 == 0:
costs.append(cost)
#打印成本数据
if (print_cost) and (i % 100 == 0):
print("迭代的次数: %i , 误差值: %f" % (i,cost))
params = {
"w" : w,
"b" : b }
grads = {
"dw": dw,
"db": db }
return (params , grads , costs)
将预测值存储在向量Y_prediction中;
def predict(w , b , X ):
"""
使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,
参数:
w - 权重,大小不等的数组(num_px * num_px * 3,1)
b - 偏差,一个标量
X - 维度为(num_px * num_px * 3,训练数据的数量)的数据
返回:
Y_prediction - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量)
"""
m = X.shape[1] #图片的数量
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0],1)
#计预测猫在图片中出现的概率
A = sigmoid(np.dot(w.T , X) + b)
for i in range(A.shape[1]):
#将概率a [0,i]转换为实际预测p [0,i]
Y_prediction[0,i] = 1 if A[0,i] > 0.5 else 0
#使用断言
assert(Y_prediction.shape == (1,m))
return Y_prediction
整合到model()函数;
def model(X_train , Y_train , X_test , Y_test , num_iterations = 2000 , learning_rate = 0.5 , print_cost = False):
"""
通过调用之前实现的函数来构建逻辑回归模型
参数:
X_train - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
Y_train - numpy的数组,维度为(1,m_train)(矢量)的训练标签集
X_test - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
Y_test - numpy的数组,维度为(1,m_test)的(向量)的测试标签集
num_iterations - 表示用于优化参数的迭代次数的超参数
learning_rate - 表示optimize()更新规则中使用的学习速率的超参数
print_cost - 设置为true以每100次迭代打印成本
返回:
d - 包含有关模型信息的字典。
"""
w , b = initialize_with_zeros(X_train.shape[0])
parameters , grads , costs = optimize(w , b , X_train , Y_train,num_iterations , learning_rate , print_cost)
#从字典“参数”中检索参数w和b
w , b = parameters["w"] , parameters["b"]
#预测测试/训练集的例子
Y_prediction_test = predict(w , b, X_test)
Y_prediction_train = predict(w , b, X_train)
#打印训练后的准确性
print("训练集准确性:" , format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100) ,"%")
print("测试集准确性:" , format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100) ,"%")
d = {
"costs" : costs,
"Y_prediction_test" : Y_prediction_test,
"Y_prediciton_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations" : num_iterations }
return d
可视化;
#绘制图
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
可视化比较,比较一下我们模型的学习曲线和几种学习速率的选择。
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()