受电弓的检测是确保列车安全运行的关键环节,可以通过多种技术手段来完成。普华基础软件申请了AI列车受电弓检测专利,这一创新系统通过减少人工检测带来的主观性和人为误判,推动了检测流程的标准化,使得漏检现象得到有效控制。该系统建立在机器学习与深度学习的基础上,通过不断收集与分析大规模的数据,人工智能能够快速而精准地识别与判断受电弓的状态,锻造了一套高度智能化的检测机制。相比传统人工检测方法,这种基于AI的方法不仅提升了效率,更为列车安全保驾护航。
此外,受电弓故障的车载图像识别技术也被提出,以实时检测受电弓降弓、变形与毁坏,碳滑板异常磨耗与缺口,弓角变形与缺失故障。该技术基于更快速的区域卷积神经网络(Faster R-CNN)目标检测框架设计了弓头图像定位目标检测模型,利用残差网络代替原有卷积网络,利用特征金字塔多尺度预测结构构建了候选区域推荐网络,以精准、快速地进行弓头定位和状态检侧。
在Python代码示例中,使用机器学习算法来模拟受电弓的故障预测。以下是一个简单的代码示例,展示如何使用随机森林算法来预测受电弓的故障:
Python复制
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
# 加载数据
data = pd.read_csv('panto_data.csv')
# 特征和标签
X = data[['vibration', 'temperature', 'contact_pressure', 'speed']]
y = data['fault']
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 创建随机森林分类器
model = RandomForestClassifier(n_estimators=100, random_state=42)
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
这段代码首先加载数据,然后使用随机森林算法来训练一个分类器,该分类器可以根据受电弓的运行参数预测其故障。最后,代码评估了模型的准确性。