在现代商业环境中,数据仓库已经成为支持企业决策和分析的重要工具。数据仓库不仅整合了来自不同数据源的数据,还通过一系列有条理的模型和层次结构,使得数据能够方便地被查询、分析和应用。本文将介绍数据仓库中的主要模型,包括基础数据模型(BDM)、事实数据模型(FDM)、维度数据模型(DIM)、汇总数据模型(GDM)、应用数据模型(ADM)以及应用层(APP)。
1. 基础数据模型(BDM)
定义:基础数据模型(Basic Data Model, BDM)是数据仓库中的最底层,通常包含从各种内部和外部数据源直接抽取的原始数据。
特点:数据在这一层通常是最详细且未经处理的,包括所有必要的原始记录。这些数据可能是从事务数据库、日志文件、社交媒体数据、传感器数据等源头收集而来的。
作用:这一层的数据为上层的模型提供了丰富的细粒度数据支持,是所有数据处理和分析的基础。
2. 事实数据模型(FDM)
定义:事实数据模型(Fact Data Model, FDM)存储了业务过程中的重要事务数据。它主要包括数值型的度量数据,如销售金额、交易次数、库存量等。
特点:事实表通常包含大量记录,数据量庞大,需要进行高效的存储和访问优化。
作用:FDM层的数据可以通过分析不同的交易和事件,