第六章 与学习相关的技巧

一、参数的更新

在前几章中,为了找到最优参数,我们将参数的梯度(导数)作为了线索。使用参数的梯度,沿梯度方向更新参数,并重复这个步骤多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降法(stochastic gradient descent),简称SGD

1、SGD的缺点

对于函数        f(x,y)=\frac1{20}x^2+y^2

这个梯度的特征是,y 轴方向上大,x 轴方向上小。换句话说,就是y 轴方向的坡度大,而x轴方向的坡度小。这里需要注意的是,虽然式(6.2)的最小值在(x, y) = (0, 0) 处,但是图6-2 中的梯度在很多地方并没有指向(0, 0)

SGD呈“之”字形移动。这是一个相当低效的路径。也就是说,SGD的缺点是,如果函数的形状非均向(anisotropic),比如呈延伸状,搜索的路径就会非常低效。因此,我们需要比单纯朝梯度方向前进的SGD更聪明的方法。SGD低效的根本原因是,梯度的方向并没有指向最小值的方向

实例:

在梯度下降的过程中,Loss值会在山谷中间震荡,慢慢地震荡向右下方而不是从山顶到山谷然后快速地向右下方。这是因为蓝色方向的梯度分量太大,主要是在这个方向上进行梯度下降,而红色箭头方向上梯度的份量小,因此在这个方向上下降得慢(也不是说不降),因此总体上就呈现出震荡下降的情形,也就是说训练的时候Loss下降的很慢

2、Momentum

class Momentum:

    """Momentum SGD"""

    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None
        
    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():                                
                self.v[key] = np.zeros_like(val)
                
        for key in params.keys():
            self.v[key] = self.momentum*self.v[key] - self.lr*grads[key] 
            params[key] += self.v[key]

和SGD相比,我们发现“之”字形的“程度”减轻了。这是因为虽然x轴方向上受到的力非常小,但是一直在同一方向上受力,所以朝同一个方向会有一定的加速。反过来,虽然y 轴方向上受到的力很大,但是因为交互地受到正方向和反方向的力,它们会互相抵消,所以y 轴方向上的速度不稳定

3、AdaGrad (取自Adaptive)

学习率过小,会导致学习花费过多时间;反过来,学习率过大,则会导致学习发散而不能正确进行。有一种被称为学习率衰减(learning ratedecay)的方法,即随着学习的进行,使学习率逐渐减小。逐渐减小学习率的想法,相当于将“全体”参数的学习率值一起降低。 AdaGrad 进一步发展了这个想法,针对“一个一个”的参数,赋予其“定制”的值

class AdaGrad:

    """AdaGrad"""

    def __init__(self, lr=0.01):
        self.lr = lr
        self.h = None
        
    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)
            
        for key in params.keys():
            self.h[key] += grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)

4、Adam (融合Momentum和AdaGrad的方法)

pass

class Adam:

    """Adam (http://arxiv.org/abs/1412.6980v8)"""

    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.iter = 0
        self.m = None
        self.v = None
        
    def update(self, params, grads):
        if self.m is None:
            self.m, self.v = {}, {}
            for key, val in params.items():
                self.m[key] = np.zeros_like(val)
                self.v[key] = np.zeros_like(val)
        
        self.iter += 1
        lr_t  = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / (1.0 - self.beta1**self.iter)         
        
        for key in params.keys():
            #self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key]
            #self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2)
            self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
            self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key])
            
            params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
            
            #unbias_m += (1 - self.beta1) * (grads[key] - self.m[key]) # correct bias
            #unbisa_b += (1 - self.beta2) * (grads[key]*grads[key] - self.v[key]) # correct bias
            #params[key] += self.lr * unbias_m / (np.sqrt(unbisa_b) + 1e-7)

5、基于MNIST 数据集的更新方法的比较 

# 1:実験の設定==========
optimizers = {}
optimizers['SGD'] = SGD()
optimizers['Momentum'] = Momentum()
optimizers['AdaGrad'] = AdaGrad()
optimizers['Adam'] = Adam()
#optimizers['RMSprop'] = RMSprop()

networks = {}
train_loss = {}
for key in optimizers.keys():
    networks[key] = MultiLayerNet(
        input_size=784, hidden_size_list=[100, 100, 100, 100],
        output_size=10)
    train_loss[key] = []    


# 2:訓練の開始==========
for i in range(max_iterations):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    
    for key in optimizers.keys():
        grads = networks[key].gradient(x_batch, t_batch)
        optimizers[key].update(networks[key].params, grads)
    
        loss = networks[key].loss(x_batch, t_batch)
        train_loss[key].append(loss)
    
    if i % 100 == 0:
        print( "===========" + "iteration:" + str(i) + "===========")
        for key in optimizers.keys():
            loss = networks[key].loss(x_batch, t_batch)
            print(key + ":" + str(loss))

二、权重的初始值

1、可以将权重初始值设为0或设成相同值吗?

正向传播过程中,在输入层的权重为0或相同时第2 层的神经元全部会被传递相同的值。第2 层的神经元中全部输入相同的值,这意味着反向传播时第2 层的权重全部都会进行相同的更新。因此,权重被更新为相同的值,并拥有了对称的值(重复的值)。这使得神经网络拥有许多不同的权重的意义丧失了。为了防止“权重均一化”(严格地讲,是为了瓦解权重的对称结构),必须随机生成初始值。

2、隐藏层的激活值(激活函数的输出数据)的分布(sigmoid激活函数)

首先观察权重初始值是如何影响隐藏层的激活值的分布的:

使用标准差为1 的高斯分布生成的权重作用于 5 层的神经网络,使用sigmoid激活函数:

各层的激活值呈偏向0 和1 的分布。这里使用的sigmoid函数是S型函数,随着输出不断地靠近0(或者靠近1),它的导数的值逐渐接近0。因此,偏向0 和1 的数据分布会造成反向传播中梯度的值不断变小,最后消失。这个问题称为梯度消失(gradient vanishing)。层次加深的深度学习中,梯度消失的问题可能会更加严重。

使用标准差为0.01 的高斯分布生成的权重作用于 5 层的神经网络,使用sigmoid激活函数:

这次呈集中在 0.5 附近的分布,不会发生梯度消失的问题。但是,激活值的分布有所偏向,说明在表现力上会有很大问题。比如,如果100 个神经元都输出几乎相同的值,那么也可以由1 个神经元来表达基本相同的事情。因此,激活值在分布上有所偏向会出现“表现力受限”的问题。

使用“Xavier 初始值”(简化后的):

3、ReLU的权重初始值

Xavier 初始值是以激活函数是线性函数为前提而推导出来的。因为sigmoid函数和tanh函数左右对称,且中央附近可以视作线性函数,所以适合使用Xavier 初始值。

但当激活函数使用ReLU时,一般推荐使用ReLU专用的初始值,也就是Kaiming He等人推荐的初始值,也称为“He初始值”

当前一层的节点数为 n 时,He 初始值使用标准差为\sqrt{\frac{2}{n}}的高斯分布。

三、Batch Normalization(简称Batch Norm)

在上一节,如果设定了合适的权重初始值,则各层的激活值分布会有适当的广度,从而可以顺利地进行学习。那么,为了使各层拥有适当的广度,“强制性”地调整激活值的分布会怎样呢?实际上,Batch Normalization方法就是基于这个想法而产生的。

流程:首先使数据分布的均值为0、方差为1 的正规化,可以减小数据分布的偏向

接着,

Batch Norm的反向传播在Frederik Kratzert 的博客“Understanding the backwardpass through Batch Normalization Layer”[13] 里有详细说明,感兴趣的读者可以参考一下。

class BatchNormalization:
    """
    http://arxiv.org/abs/1502.03167
    """
    def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None):
        self.gamma = gamma
        self.beta = beta
        self.momentum = momentum
        self.input_shape = None # Conv層の場合は4次元、全結合層の場合は2次元  

        # テスト時に使用する平均と分散
        self.running_mean = running_mean
        self.running_var = running_var  
        
        # backward時に使用する中間データ
        self.batch_size = None
        self.xc = None
        self.std = None
        self.dgamma = None
        self.dbeta = None

    def forward(self, x, train_flg=True):
        self.input_shape = x.shape
        if x.ndim != 2:
            N, C, H, W = x.shape
            x = x.reshape(N, -1)

        out = self.__forward(x, train_flg)
        
        return out.reshape(*self.input_shape)
            
    def __forward(self, x, train_flg):
        if self.running_mean is None:
            N, D = x.shape
            self.running_mean = np.zeros(D)
            self.running_var = np.zeros(D)
                        
        if train_flg:
            mu = x.mean(axis=0)
            xc = x - mu
            var = np.mean(xc**2, axis=0)
            std = np.sqrt(var + 10e-7)
            xn = xc / std
            
            self.batch_size = x.shape[0]
            self.xc = xc
            self.xn = xn
            self.std = std
            self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu
            self.running_var = self.momentum * self.running_var + (1-self.momentum) * var            
        else:
            xc = x - self.running_mean
            xn = xc / ((np.sqrt(self.running_var + 10e-7)))
            
        out = self.gamma * xn + self.beta 
        return out

    def backward(self, dout):
        if dout.ndim != 2:
            N, C, H, W = dout.shape
            dout = dout.reshape(N, -1)

        dx = self.__backward(dout)

        dx = dx.reshape(*self.input_shape)
        return dx

    def __backward(self, dout):
        dbeta = dout.sum(axis=0)
        dgamma = np.sum(self.xn * dout, axis=0)
        dxn = self.gamma * dout
        dxc = dxn / self.std
        dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)
        dvar = 0.5 * dstd / self.std
        dxc += (2.0 / self.batch_size) * self.xc * dvar
        dmu = np.sum(dxc, axis=0)
        dx = dxc - dmu / self.batch_size
        
        self.dgamma = dgamma
        self.dbeta = dbeta
        
        return dx

四、正则化 

1、过拟合

只能拟合训练数据,但不能很好地拟合不包含在训练数据中的其他数据的状态。

2、权值衰减

权值衰减是一直以来经常被使用的一种抑制过拟合的方法。该方法通过 在学习的过程中对大的权重进行惩罚,来抑制过拟合。很多过拟合原本就是因为权重参数取值过大才发生的

λ是控制正则化强度的超参数。λ设置得越大,对大的权重施加的惩罚就越重

3、Dropout

作为抑制过拟合的方法,前面我们介绍了为损失函数加上权重的L2 范数的权值衰减方法。该方法可以简单地实现,在某种程度上能够抑制过拟合。但是,如果网络的模型变得很复杂,只用权值衰减就难以应对了。在这种情况下,我们经常会使用Dropout 方法。

class Dropout:
    """
    http://arxiv.org/abs/1207.0580
    """
    def __init__(self, dropout_ratio=0.5):
        self.dropout_ratio = dropout_ratio
        self.mask = None

    def forward(self, x, train_flg=True):
        if train_flg:
        #  * 星号的作用大概是去掉 tuple 属性(自动解包)
            self.mask = np.random.rand(*x.shape) > self.dropout_ratio
            return x * self.mask
        else:
            return x * (1.0 - self.dropout_ratio)
            # 学习过程可直接输出,不用乘删除比例

    def backward(self, dout):
        return dout * self.mask

所谓集成学习,就是让多个模型单独进行学习,推理时再取多个模型的输出的平均值。集成学习与Dropout 有密切的关系。这是因为可以将Dropout 理解为,通过在学习过程中随机删除神经元,从而每一次都让不同 的模型进行学习。并且,推理时,通过对神经元的输出乘以删除比例(比如,0.5 等),可以取得模型的平均值。

四、超参数的验证

1、验证数据

训练数据用于参数(权重和偏置)的学习,验证数据用于超参数的性能评估。为了确认泛化能力,要在最后使用(比较理想的是只用一次)测试数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值